A Unified Fit: Quantum Gravity Theory’s Success Across FourGalaxy Types, Now Applied to Cluster-Embedded M87‎

  • Authors

    https://doi.org/10.14419/z4rtqm72

    Received date: July 15, 2025

    Accepted date: September 4, 2025

    Published date: September 12, 2025

  • Dark Matter Alternatives; Galaxy Clusters; Quantum Gravity; NGC 6503; M87; Velocity ‎Dispersion Profiles; Graviton-Antigraviton Interactions: Effective Field Theory
  • Abstract

    We apply the Quantum Gravity Theory (QGT) of gravity to the giant elliptical galaxy M87 using an extended velocity dispersion profile (0.5-100 kpc) to test its universality in a pressure-supported cluster environment. QGT has previously been validated across spiral and ‎dwarf galaxies (NGC 6503, NGC 3198, DDO 154, and NGC 2903). QGT—grounded in ‎graviton-antigraviton interactions—reproduces the observed kinematics without dark matter ‎or parameter tuning, deriving its transition scale (‎ = 23.6 kpc) solely from baryonic mass. ‎Key results demonstrate: 1. Statistical Dominance: QGT achieves the lowest BIC score of -‎‎16.4, decisively outperforming Newtonian dynamics (BIC = 132.8), MOND (BIC = 78.5), ‎and NFW dark matter halos (BIC = 42.3) with ΔBIC = 58.7 against NFW and ΔBIC = 94.9 ‎against MOND. 2. Virtual Mass Amplification: Antigraviton-mediated effects generate scale-dependent mass amplification (reaching 2.64x at 100 kpc), eliminating the need for particle ‎dark matter. 3. Kinematic Fit: 85% reduction in RMS residuals vs. Newtonian dynamics (7.3 ‎km/s vs. 52.4 km/s), with errors ≤5% across all radii. These results extend QGT's validity from ‎spiral/dwarf galaxies to cluster-anchored ellipticals. Future gravitational-wave missions (e.g., ‎DECIGO/BBO) could test its cosmological extensions‎.

  • References

    1. Abbasi, R., Ackermann, M., Adams, J., et al. (IceCube Collaboration) (2023). Search for Quantum Gravity Using Astrophysical Neutrino Flavour with IceCube. Nature Physics, 19, 128-34. https://doi.org/10.1038/s41567-022-01762-1.
    2. Arkani-Hamed, N., Georgi, H., & Schwartz, M. D. (2003). Effective field theory for massive gravitons and gravity in theory space. Annals of Phys-ics 305(1), 96–118. https://doi.org/10.1016/S0003-4916(03)00068-X.
    3. Böhringer, H., Briel, U. G., Schwarz, R. A., et al. (1994). The structure of the Virgo cluster of galaxies from Rosat X-ray images. Nature, 368, 828. https://doi.org/10.1038/368828a0.
    4. Cappellari, M, Scott, N., Alatalo, K., et al. (2013). The ATLAS3D project - XV. Benchmark for early-type galaxies scaling relations from 260 dy-namical models: mass-to-light ratio, dark matter, Fundamental Plane and Mass Plane. Monthly Notices of the Royal Astronomical Society, Volume 432, Issue 3, p.1709-1741MNRAS, 432, 1709. https://doi.org/10.1093/mnras/stt562.
    5. Emsellem, E., Krajnovic, D., & Sarzi, M. (2014). A kinematically distinct core and minor-axis rotation: the MUSE perspective on M87. Monthly Notices of the Royal Astronomical Society, 445, L79. 83, https://doi.org/10.1093/mnrasl/slu140.
    6. Gebhardt, K., Adams, J., Richstone, D., et al. (2011) The Black Hole Mass in M87 from Gemini/NIFS Adaptive Optics Observations. The Astro-physical Journal, 729,119. https://doi.org/10.1088/0004-637X/729/2/119.
    7. Liddle, A.R. (2007). Information criteria for astrophysical model selection. Monthly Notices of Royal Astronomical Society, 377, L74-L78. https://doi.org/10.1111/j.1745-3933.2007.00306.x.
    8. Liu, D., Yang, Y., & Long, Z.-W. (2024), Probing black holes in a dark matter spike of M87 using quasinormal modes. Eur. Phys. J. C, 84,731. https://doi.org/10.1140/epjc/s10052-024-13096-8.
    9. McLaughlin, D. E. 1999. The Efficiency of Globular Cluster Formation and the Cluster Formation Epoch: Constraints from the Virgo and Fornax Clusters. The Astronomical Journal, 117, No. 5, pp.2398. https://doi.org/10.1086/300836.
    10. Milgrom, M. (1983). A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. The Astrophysical Journal, 270, 365–370. https://doi.org/10.1086/161130.
    11. Murphy, J. D., Gebhardt, K., & Adams, J. J. (2011). Galaxy kinematics with VIRUS-P: The dark matter halo of M87. The Astrophysical Journal, 729(2), 129. https://doi.org/10.1088/0004-637X/729/2/129.
    12. Navarro, J. F., Frenk, C. S., & White, S. D. M. (1996). The structure of cold dark matter halos. The Astrophysical Journal, 462, 563. https://doi.org/10.1086/177173.
    13. Newman, A.B., Treu, T., Ellis, R.S., & Sand, D.J. (2013). The density profiles of massive, relaxed galaxy clusters. I. the total density over three decades in radius. The Astrophysical Journal, 765, 24. https://doi.org/10.1088/0004-637X/765/1/24.
    14. Pikovski, I., Vanner, M. R., Aspelmeyer, M., et al. (2015). Probing Planck-scale physics with quantum optics. Nature Physics 11(8), 668–672. https://doi.org/10.1038/nphys3366.
    15. Samurovic, S. (2014) Investigation of dark matter and modified Newtonian dynamics in early-type galaxies through globular cluster system. As-tronomy & Astrophysical 570, A132. https://doi.org/10.1051/0004-6361/201321459.
    16. Umetsu, K. (2020). Cluster-galaxy weak lensing. The Astronomy and Astrophysics Review, 28(1), 7. https://doi.org/10.1007/s00159-020-00129-w.
    17. Vikhlinin, A., Kravtsov, A., Forman, W., et al. (2006). Chandra sample of nearby relaxed galaxy clusters. The Astrophysical Journal, 640(2), 691–709. https://doi.org/10.1086/500288.
    18. Walter, F., Brinks, E., de Blok, W. J. G., Bigiel, F., Kennicutt, R. C., Thornley, M. D., & Leroy, A. (2008). THINGS: The H I Nearby Galaxy Sur-vey. The Astronomical Journal, 136(6), 2563–2647. https://doi.org/10.1088/0004-6256/136/6/2563.
    19. Wong, W. H., Wong, W. T., Wong, W. K., & Wong, L. M. (2014). Discovery of antigraviton verified by the rotation curve of NGC 6503. Interna-tional Journal of Advanced Astronomy, 2(1), 1–7. https://doi.org/10.14419/ijaa.v2i1.2244.
    20. Wong, W. T., & Wong, W. K. (2025a). Resolving NGC 3198’s rotation curve with Quantum Gravity Theory: A dark matter-free framework. In-ternational Journal of Advanced Astronomy, 13(1), 18–20. https://doi.org/10.14419/08asxq90.
    21. Wong, W. T., & Wong, W. K. (2025b). Quantum Gravity Theory across galactic scales: A comparative study of NGC 3198 and DDO 154. Inter-national Journal of Advanced Astronomy, 13(1), 21–24. https://doi.org/10.14419/mmcyrk75.
    22. Wong, W. T., & Wong, W. K. (2025c). Evaluating the applicability of Quantum Gravity Theory (QGT): A comparative analysis of NGC 2903, NGC 3198 and DDO 154. International Journal of Advanced Astronomy, 13(2), 1–8. https://doi.org/10.14419/005r6560.
    23. Yagi, K. & Seto, N. (2011). Detector configuration for DECIGO/BBO and identification of cosmological neutron-star binaries. Physical Review D 83(4), 044011 (2011). https://doi.org/10.1103/PhysRevD.83.044011.
  • Downloads

  • How to Cite

    Wong , W. T., & Wong, W.-K. (2025). A Unified Fit: Quantum Gravity Theory’s Success Across FourGalaxy Types, Now Applied to Cluster-Embedded M87‎. International Journal of Advanced Astronomy, 13(2), 9-14. https://doi.org/10.14419/z4rtqm72