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Abstract 
 

We have derived FLRW line-element in Bimetric Theory of Gravitation (BTG) by solving Rosen’s field equations, and it is concluded 

that the geometry of our model in BTG is agreed with the geometry of FLRW model in GR. It is also realized that for the large

the deceleration parameter q in our model admits the value 

observations of [44-48].This This shows that our FLRW model in BTG is 

not the case in GR. Other geometrical and physical aspects to the model are also studied
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1. Introduction 

The spherical symmetry has its own importance in General Rel

tivity (GR) theory by virtue of its comparative simplicity. Many 

important space-times such as Schwarzschild (exterior and interior) 

solutions, the Robertson-Walker models of expanding universe, 

etc. are all spherically symmetric. The large-scale

galaxies in our universe shows that the matter distribution is sati

factorily described by perfect fluid. The whole universe is spher

cally symmetric in nature and therefore, it is important to study the 

spherically symmetric cosmological models of the universe. 

Scientific cosmology really began, when Albert Einstein [1] pu

lished his field equations of GR. The current cosmological models 

are based on GR because this theory is what produces at present 

the best agreement for large-scale behavior of the universe. There 

are two types of cosmological models: Static cosmological models 

and Non-static cosmological models. The static cosmological 

models are described by Einstein and de- Sitter. Einstein universe 

is full of matter, and it does not allow any motion while 

Sitter universe is empty and it allows motion. When Einstein d

rived his static model, the universe was assumed to be static in 

nature. But later on, Edwin Hubble [2] and Hubble and Humason 

[3] have shown that the universe is not static, but it is expanding. 

Since the static models do not really represent the visible universe

Therefore, in order to describe the behavior of visible un

was essential to study the non-static models of the universe. 

Friedman [4-5] concluded that if the Einstein’s theory of GR was 

correct then our universe must either expand or contract. He was 

the first who proposed the non-static model of expan

Robertson [6] made a simple assumption that on the large scale, 

the universe is homogeneous and isotropic for obtaining a non

static model of the universe. The work on non-static cosmological 

models which was initiated by Friedman [4-5], fur

ried out independently by Lemaitre [7] and Walker [8].
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element in Bimetric Theory of Gravitation (BTG) by solving Rosen’s field equations, and it is concluded 

that the geometry of our model in BTG is agreed with the geometry of FLRW model in GR. It is also realized that for the large

in our model admits the value ( 1)−  which is close to the value ( 0.77)≈ − at present epoch predicted by the 

48].This This shows that our FLRW model in BTG is found to be in an accelerating phase at present epoch which is 

not the case in GR. Other geometrical and physical aspects to the model are also studied. 

Bimetric Theory of Gravitation; Cosmology; Isotropy. 

The spherical symmetry has its own importance in General Rela-

tivity (GR) theory by virtue of its comparative simplicity. Many 

times such as Schwarzschild (exterior and interior) 

Walker models of expanding universe, 

scale distribution of 

galaxies in our universe shows that the matter distribution is satis-

factorily described by perfect fluid. The whole universe is spheri-

and therefore, it is important to study the 

spherically symmetric cosmological models of the universe.  

Scientific cosmology really began, when Albert Einstein [1] pub-

lished his field equations of GR. The current cosmological models 

ed on GR because this theory is what produces at present 

scale behavior of the universe. There 

are two types of cosmological models: Static cosmological models 

static cosmological models. The static cosmological 

Sitter. Einstein universe 

is full of matter, and it does not allow any motion while the de-

and it allows motion. When Einstein de-

rived his static model, the universe was assumed to be static in 

ure. But later on, Edwin Hubble [2] and Hubble and Humason 

[3] have shown that the universe is not static, but it is expanding. 

Since the static models do not really represent the visible universe. 

Therefore, in order to describe the behavior of visible universe, it 

static models of the universe.  

5] concluded that if the Einstein’s theory of GR was 

correct then our universe must either expand or contract. He was 

static model of expanding universe. 

Robertson [6] made a simple assumption that on the large scale, 

the universe is homogeneous and isotropic for obtaining a non-

static cosmological 

5], further it was car-

Lemaitre [7] and Walker [8]. 

The model obtained by them is called Friedman

bertson- Walker (FLRW) metric which rules the evolution of the 

universe and it is expressed in the form 

( )

2 2 2 2 2 2 2 2

2 2 2
 dr sin   ,

[1 ( 4 )]

g t
e

ds r d r d dt
kr a

θ θ ϕ= − + + +  
+

where k  is the curvature constant which can assume the values 

1,  0 − and 1+  respectively for open, flat and closed models of the 

universe. This metric is spherically symmetric giving an exact 

solution of Einstein’s field equations of GR and describes a h

mogeneous, isotropic expanding or contracting universe. It is the 

standard model of modern cosmology. FLRW model is important 

and has much physical significance in the study of the universe 

and therefore many researchers [9-13] have examined the geom

trical and physical behavior of it in GR and also in other modified 

gravitational theories and exposed the nature of the universe. Still 

findings are going on about the nature of FLRW model in mo

ified gravitational theories, since FLRW model shows that our 

universe is homogeneous and isotropic in nature and it is su

ported by various recent cosmological observations [14

One of the successful modified theory to GR is Rosen’s Bimetric 

Theory of Gravitation (BTG) [21-23], since it is free from sing

larities and obeys the principle of covariance and principle of 

equivalence of GR and it is based on two metrics: One is the Ri

mannian metric with metric potentials g

ij
γ  attached at every point of space-time. The field equations of 

this BTG are  

1
   ,

2

j j j

i i i
N N Tδ− = −

   

where 

( )  

   |  |

1
,

2

j s j

i s i
N g g

α β

α β
γ=
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element in Bimetric Theory of Gravitation (BTG) by solving Rosen’s field equations, and it is concluded 

that the geometry of our model in BTG is agreed with the geometry of FLRW model in GR. It is also realized that for the large value of t, 

at present epoch predicted by the 

found to be in an accelerating phase at present epoch which is 

The model obtained by them is called Friedman- Lemaitre- Ro-

Walker (FLRW) metric which rules the evolution of the 

2 2 2 2 2 2 2 2 dr sin   ,ds r d r d dtθ θ ϕ= − + + +                   (1) 

is the curvature constant which can assume the values 

respectively for open, flat and closed models of the 

universe. This metric is spherically symmetric giving an exact 

solution of Einstein’s field equations of GR and describes a ho-

mogeneous, isotropic expanding or contracting universe. It is the 

odel of modern cosmology. FLRW model is important 

and has much physical significance in the study of the universe 

13] have examined the geome-

trical and physical behavior of it in GR and also in other modified 

theories and exposed the nature of the universe. Still 

findings are going on about the nature of FLRW model in mod-

ified gravitational theories, since FLRW model shows that our 

universe is homogeneous and isotropic in nature and it is sup-

recent cosmological observations [14-20]. 

One of the successful modified theory to GR is Rosen’s Bimetric 

23], since it is free from singu-

larities and obeys the principle of covariance and principle of 

it is based on two metrics: One is the Rie-

ij
g  and other is flat metric 

time. The field equations of 

       
(2) 

       
(3) 
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is the Rosen’s Ricci-tensor and ij

ij
N g N= is the Rosen’s scalar. 

Here and hereafter the vertical bar ( |  )  stands for −γ covariant 

differentiation with det  ( )
ij

g g= and det  ( ).
ij

γ γ=  

Many researchers have been developing the cosmological models 

of the universe in this BTG and trying to evaluate their geometric-

al and physical properties. Some of them are Rosen [21-23], Ka-

rade [24], Isrelit, [25], Yilmaz [26], Reddy and Venkateshwara 

Rao [27], Katore and Rane [28], Khadekar and Tade [29], Borka-

ret al. [30-39], Borkar and Ameen [40-42], Gaikwad et al. [43] etc.  

In this Paper, we have taken-up the study of FLRW model in BTG 

and obtained the solutions of Rosen’s field equations (2) and (3) in 

regards with the FLRW metric. Some geometrical and physical 

aspects of the FLRW model have been studied in BTG. It is rea-

lized that the geometry of our derived model in BTG is matched 

with the geometry of FLRW model in GR. Further, it is seen that 

the value of the deceleration parameter q is found as ( 1)−  at 

present epoch which is very near to the present observed value 

( 0.77)≈ − of the deceleration parameter at late times as per recent 

observations of [44-48]. 

2. Metric and field equations  

The spherically symmetric FLRW metric is 

 
2 2 2 2 2 2 2 2

 dr sin  
f g

ds e r d r d dtθ θ ϕ+= − + + +   ,         (4) 

 

where f and g are the functions of r and t respectively. 

The background flat metric corresponding to the metric (4) is giv-

en by  

 
2 2 2 2 2 2 2 2

 dr sin  .
f

d e r d r d dtη θ θ ϕ= − + + +          
(5) 

 

The energy momentum tensor j

i
T  for a perfect fluid distribution is 

 

( )  ,j j j

i i i
T p v v pgρ= + −          (6) 

 

where p is the isotropic pressure, ρ is the energy density and i
v is 

the four velocity vector with magnitude 1.i j

ij
g v v =  

The co-moving co-ordinates is to be assumed. So that  

 
1 2 3 0v v v= = = and 4 1 .v =          (7) 

 

The components of energy momentum tensor j

i
T for a perfect 

fluid distribution from the equations (6) and (7) are  

 
1 2 3

1 2 3
T T T p= = = − , 4

4
 .T ρ=          (8) 

 

Simplifying the Rosen’s field equations (2) and (3) for the metrics 

(4) and (5) with the help of equation (8), we arrived at the follow-

ing differential equations. 

2

2 2

1 1 1 1
cos  ,

4 4 2

f f f
g e f e e ec p

r r
θ− − −′′− + + = −&&

       
(9) 

2

2

1 1 1
cos  ,

4 4 2

f f
g e f e ec p

r
θ− −′′− + = −&&

       
(10) 

2

2

1 1 1
cos  ,

4 4 2

f fg e f e ec p
r

θ− −′′− − = −&&

       
(11) 

2

2 2

3 3 1 1
cos  ,

4 4 2

f f fg e f e e ec
r r

θ ρ− − −′′− + + =&&

      
(12) 

where overhead dots and primes denote differentiation with re-

spect to t and r respectively. 

 

From the above differential equations (9) and (10), we write 

 

2
0 .

fe

r

−

=                                                                                         (13) 

 

With this equation (13), the above differential equations (9-12) 

reduce in two equations 

 

1 1
 ,

4 4

fg e f p− ′′− = −&&

         
(14) 

 

3 3
 .

4 4

f
g e f ρ− ′′− =&&

         
(15) 

3. Solution of the field equations 

On large scale, the universe is homogeneous and isotropic in na-

ture with the distribution of perfect fluid and therefore, we are 

using the isotropic condition in our study to evaluate the model. 

We are going to solve these two differential equations (14) and 

(15) which are in three un-knowns f, p and .ρ Therefore, in order 

to have a unique solution, we require only one extra condition to 

solve the differential equations (14) and (15). We proceed the 

matter with the assumption 1 4

1 4
T T= −  and then the equations (14) 

and (15) using equation (8) yield 

 

 .f
g e f

− ′′=&&          (16) 

 

In this equation (16), the right-hand side is a function of r only 

and left-hand side is a function of t only and therefore each side 

can be taken as a constant (say) 
1
.a Thus, we write 

 

1

f
g e f a

− ′′= =&& (Constant).          (17) 

 

So that we have 

 

1
 ,g a=&&

          (18) 

 

and 

 

1
 .f

e f a
− ′′ =          (19) 

 

We are solving the differential equation (19). For this, we substi-

tute 

 

( ) .f
e F r

− =          (20) 

 

We write 

 
2

1
0 .FF F a F′′ ′− − =          (21) 

 

Now substituting ( )
dF

F m
dr

′ = =  

 

and 

 
2

2
( )  ( )
d F dm

F m
dr dF

′′ = =  

 

The above differential equation (21) reduces to 

 
2

1
 ,

dm m
m a

dF F
− =

         
(22) 

 

which can be reduced further as 
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1

2
2  .

dn
n a

dF F
− =

         
(23) 

 

With the value 2
.m n= the solution of this equation (23) is given 

by 

 

1

2

2
 .

an
c

F F
= −  

 

OR 

 
2

2

1
2  .

dF
cF a F

dr

 
= − 

          
(24) 

 

OR 

 

( )
1

 
21     ,F F dF c dr

−

− =           
(25) 

 

where c is the constant of integration and it is chosen as 
1

2 .c a= To 

solve the above equation (25), we are choosing F as 
2coshF η= , 

so that 

 
2cosh sinh   ,dF dη η η=  

 

and the equation (25) gives 

 

 ,
2

c
d drη =

         
(26) 

 

which after integration, yields 

 

1

2

c
r cη = +  

 

OR 

 

( )1

1
cosh

2

c
F r c

− = +  

 

OR 

 

2

1
cosh  r c  ,

2

c
F

 
= +  

 
 

 

where 
1

c is the constant of integration. For simplicity, selecting 

1
0.c = so that 

 

2

2 2

1
sech  .

2 [1 ( 8)]

f c
e r

cr

 
= =   +         

(27) 

 

Thus, the form of FLRW line-element in Bimetric Theory of Gra-

vitation is  

 
( )

2 2 2 2 2 2 2 2

2 2
   dr sin   .
[1 ( 8)] 

g t
e

ds r d r d dt
cr

θ θ ϕ= − + + +  +      
(28) 

 

It is interesting to evaluate the geometrical and physical behavior 

of this FLRW model in BTG. On comparing this line-element (28) 

with FLRW model in GR, it is seen that our model (28) agreed 

with the FLRW model of GR with the value of constant 
22c k a=

in which 1,  0,  1k = −  having the usual meaning in FLRW model 

in GR corresponding to closed, flat and open universe. Thus, it is 

observed that the geometrical features of FLRW model in Bime-

tric theory of gravitation matched with that of the geometrical 

features in GR with the value of constant 
22c k a= and there is no 

any new behavior found in regards with its geometry in the evolu-

tion. 

4. Properties of our FLRW model  

We are going to evaluate some more geometrical and physical 

properties of this model in Bimetric gravitational theory. 

4.1. Co-ordinate transformations 

In regards with different co-ordinate transformations, we are try-

ing to see the nature of the model.  

Under the transformations, 

 

sin cos ,    sin  sin ,    z rcosx r y rθ ϕ θ ϕ θ= = = ,  

 

our model (28) is 

 
( )

2 2 2 2 2

2 2
  (dx )
[1 ( 8)]

g t
e

ds dy dz dt
cr

= − + + +
+       

(29) 

 

and it is the spatial isotropy of three space. 

With the co-ordinates transformation 

 

2
,

[1 ( 8)]

r
r

cr
′ =

+
,   ,   tθ ϕ , 

 

our FLRW model (28) having the form 

 

( )
2

2 2 2 2 2 2 2

2

dr
 sin   ,
[1 ( 2)]

g t
ds e r d r d dt

cr
θ θ ϕ

 
= − + + + 

−       
(30) 

 

and it is non-static but its geometry matched with the static Eins-

tein universe with radius 2.c This line-element (30) also 

represents three-dimensional spherical surface 

 
1 2 2 2 3 2 4 2 2( ) ( ) ( ) ( )x x x x a+ + + =  embedded in the four- dimensional  

 

Euclidean space 
1 2 3 4( , , , ).x x x x  

 

With Riemannian curvature 2k c=  (it is 
21 a in GR). 0c >  gives 

the spherical space of positive curvature and in this case our mod-

el (30) is closed. The quantity 0c <  yields a pseudo spherical 

space of negative curvature with open model (30). For 0c = , we 

have flat Euclidean space and the curvature of our model (30) is 

zero. 

Let us calculate the radius of universe ( )R t in our model 

(30).With the co-ordinates ,   ,   ,r θ ϕ we can find the radius of un-

iverse ( )R t with respect to the constant c in model (30). The cir-

cumference of the circle is 2  rπ  and surface of sphere is 2
4  .rπ  

So that the radius R  of sphere can be taken as 

 

2
0 1 ( 2)

r dr
R

c r
= ∫

−
 

and its value is 

 

12
sin

2 /

r
R

c c

−  
=  

 
 

 

which is greater than .r  So that the ratio of circumference with 

radius is 2  2 .r Rπ π<  

Assuming the radial co-ordinate r in the model (30) as 

( 2 ) sinr c ψ= , where the angle ψ (0 ).ψ π≤ ≤ With the value of 
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radial co-ordinate r , we have ( 2 ) cos  dr c dψ ψ=  and 

2 2 21 ( 2) (1 sin ) coscr ψ ψ− = − = .  

With these substitutions, our line-element (30) reduces to 

 
2 2 2 2 2 2 2 2( )[ sin ( sin )]  ,ds R t d d d dtψ ψ θ θ ϕ= − + + +       (31) 

 

in which 

 
2 ( )( ) (2 )  ,g t

R t c e=          (32) 

 

is called the radius of the universe and it is an infinite, when 0.c =

The distance of the point on the surface from the origin is 
g 2( 2   e ) c ψ and the surface of the sphere is 

g(t) 2(8 ) e sin .cπ ψ It is 

important to note that the surface of the sphere increases as we 

move away from the origin becomes maximum at 2ψ π= at a 

distance ( 2  ) 2c π  and then it starts decreasing and attains min-

imum value at ( 2 )   [ ( 2  ) ]c cψ π= .With this real ( )R t , total 

proper spatial volume of the model at any time t has been calcu-

lated as 

 
3

g(t) 2

2 2 e
2 .V

c
π
 

=  
 

 

4.2. Motion of the particles in the model 

We consider the behavior of free particles in our model (28). In 

reference to the principles of relativistic mechanics, the motion of 

free particles is given by the geodesic equation  

 
2

2
0 .

d x dx dx

ds ds ds

σ µ ν

σ

µν
+ Γ =

        
(33) 

 

We are considering two situations, first is particle is at rest and 

second is particle moving along the radial direction. In the first 

situation means for rest particle, we write 

 

0 .
dr d d

ds ds ds

θ ϕ
= = =

         
(34) 

 

Our model (28) gives  

 
2 2 2 2( )

2 2

2 2
1  sin ,

[1 ( cr 8)]

g t
e dr d d dt

r
ds ds ds ds

θ ϕ
θ

          
= − + + +         

+                
(35) 

 

and with the initial condition (34), the above equation (35) gives 

 
2

1 ,
dt

ds

 
= 

           
(36) 

 

and with the conditions (34) and (36), the geodesic equation (33) 

yields 

 
2 2 2 2

2 2 2 2
0

d r d d d t

ds ds ds ds

θ ϕ
= = = = . 

 

Thus, all components of acceleration of a particle which is at rest 

is zero. So its acceleration vanishes and hence it would remain 

permanently at rest with respect to spatial co-ordinates ,  , r θ ϕ  

and would experience no gravitational acceleration. Our observa-

tions are same with those of rest particle in GR.  

In the second situation, suppose a particle is moving along the 

radial direction. So that it has no velocity component along θ  and 

ϕ  directions. Therefore, we have 

 

0 ,
d d

ds ds

θ ϕ
= =  

 

and hence the geodesic equation (33) yields 

 
2 22

2 2 2

11 14 442
2  0 ,

d dr dr dt dt

ds ds ds ds ds

θ        
+ Γ + Γ + Γ =       

       
 

 

and 

 
2 22

3 3 3

11 14 442
2  0  ,

d dr dr dt dt

ds ds ds ds ds

ϕ        
+ Γ + Γ + Γ =       

       
 

 

and they give 

 
2

2
0

d

ds

θ
= and

2

2
0 .

d

ds

ϕ
=  

 

From these equations, it is clear that the acceleration of the par-

ticle along θ  and ϕ  directions is zero. Thus, the particle has acce-

leration only along the radial direction. From this, we have con-

cluded that the particle continues to travel in the radial direction 

and this is due to spatial isotropy of the model. 

Now let us obtain the general motion of the particle in the model. 

Suppose the particle has an initial velocity. For the time variable t, 

the geodesic equation (33) takes the form 

 
2 2 2 22

4 4 4 4

11 22 33 442

dr d d d
        0 ,

ds ds ds ds

d t t

ds

θ ϕ       
+ Γ + Γ + Γ + Γ =       

       
 

 

which gives 

 
2 2 22 ( )

2 2

2 2 2

d
  sin 0 .

2[1 ( 8)]

g t
t e dg dr d d

r
ds cr dt ds ds ds

θ ϕ
θ

        
+ + + =       

+            

(37) 

 

From equations (35) and (37), we get 

 
22

2

d 1
1 0 .

2

t dg dt

ds dt ds

  
+ − =  

           
(38) 

 

On using the substitution

2

1  ,
dt

y
ds

  
= −     

the equation (38)can be 

re-written as 

 

0 ,
dy dg

y
dt dt

+ =  

 

which on integration gives 

 
( )g t

y Ae
−=  

 

OR 

 
2

( )1 g tdt
Ae

ds

− 
− = 

           
(39) 

 

where A is constant of integration. 

From equations (35) and (39), we get 

 
2

2( )

( )

2 22 2

2 2

    .
[1 ( cr 8)]

sin

g t

g t

dr

dte dt
Ae

ds d d
r

dt ds

θ ϕ
θ

−

  
  
   

=  
+        + +                 

(40) 
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From the line-element (28), we get 

 
2 2 22 ( )

2 2

2 2 2
1 sin  ,

[1 (cr 8)]

g t
ds e dr d d

r
dt dt dt ds

θ ϕ
θ

        
= − + +       

+                  
(41) 

 

which on comparing with the motion of particles  

 
2

2 2

2
1 ( ) ,

ds
u v

dt
= −

         
(42) 

 

(where v is the velocity of light and u is the velocity of the particle 

measured by an observer at rest with respect to the coordinates 

,  ,  r θ ϕ .) , we get 

 
2 2 22 ( )

2 2 2

2 2
sin  .

[1 (cr 8)]

g t
v e dr d d

u r
dt dt ds

θ ϕ
θ

        
= + +       

+                            

(43) 

 

From equations (39), (40) and (43), we write the velocity of par-

ticle u as  

 
2

2

( )
 .

[ ]g t

v A
u

e A
=

+           
(44) 

 

From equation (44), it is obvious that in the expanding universe, 

the function ( )g t  will increase with time t and the velocities of 

free  particles  will  decrease with time and in the contracting  

universe ( )g t  will  decrease  with  time and the velocities will 

increase  with time. Thus, it is realized that the motion of particle 

at rest, along radial direction and general motion of test particle in 

our FLRW model (28) in Bimetric gravity follows the same path 

as that of the motions in FLRW model in GR and there is no any 

new geometrical properties contributing in the motion of test  

particle.  

4.3. Motion of the light rays in the model 

For a ray of light, we have 

 

0 ,ds =           (45) 

 

and in view of our model (28), this equation 0ds =  for light rays 

gives  

 
2 2 2( )

2 2 2

2 2
sin 1 .

[1 (cr 8)]

g t
e dr d d

r r
dt dt dt

θ ϕ
θ

      
+ + =      

+                       
(46) 

 

From this equation (46) and equation (42), we obtain the relation 

between velocity of light v and particle velocity u as  

 
u v=  

 

From which we conclude that the velocity of light is same as that 

of the velocity of particle.  

Let us suppose that a light ray moves initially in the radial direc-

tion. So its velocity along θ  and ϕ  directions will be zero. Thus, 

we have  

 

0 .
d d

dt dt

θ ϕ
= =

         
(47) 

 

The equation (46), with the equation (47), yields  

     
2( )

 
2 (1 ( )) .

8

g tdr cr
e

dt

−

= ± +
        

(48) 

 

In the equation (48), + sign corresponds to a ray travelling away 

from the origin and – sign represents a ray which travels towards 

the origin. Let us assume that the light ray starts travelling from 

the origin at time 
1

t  and reaches the point r  at time 
2
.t then from 

equation (48), we write 

 

2

1

( )
 

2

0 2
 ,

[1 ( 8)]

g t
r t

t

dr
e dt

cr

−

=∫ ∫
+         

(49) 

 

which gives 

 

2

1

3
2

1 2

3
2

2
tan  .

2

g
t

t

r c
e dt

c

−
−
 

=  ∫ 
          

(50) 

 

In regards with the expression for light trajectory, the Tolman [49] 

has assumed the linear expression for ( ) ,g t but in our FLRW 

model (28), we have 
1

g a=&& (constant) which provides ( )g t  as a 

quadratic function of time t. Therefore, on the line of Tolman [49], 

we are taking in particular 
1

0.a =  i.e., the linear expression for the 

function ( ).g t Thus, we assume 0g =&&  that gives ( )g t tα β= + , 

where ,α β are constants of integration. In view of this, we have 

solved the equation (50).We choose 2 ,bα =  and 0β =  then the 

expression for ( )g t  is given by 

 

( ) 2  .g t bt=          (51) 

 

Using equation (51) in equation (50), we get 

 

1 2
3

2

3
2

2 ( )
tan   .

2

bt bt
e e c

r
c b

− − −
=  

          
(52) 

 

The equation (52) is the equation of light trajectory for our model 

(28). We observed the light trajectory given by (52) in particular 

for 0g =&&  means 
1

0a =  not in general case for
1

0g a= ≠&&  in our 

model. 

4.4. The red shift 

Our model (28) can be expressed as 

 
2

2 2 2 2 2 2 2

2 2

( )
[ ( sin  )] ,

2[1 ( 8)]

cR t
ds dt dr r d d

cr
θ θ ϕ= − + +

+       
(53) 

 

where ( )R t  is the radius of universe and in our derived model its 

value is 

 
1 ( )

 
2 2( ) 2 c   .

g t

R t e
−

=          (54) 

 

We take a distant radiating source as a galaxy G which can be 

considered as a particle with co-ordinates 
1 1 1

( , , ).r θ ϕ Then assume 

that a light ray emitted by G is observed at the origin O so that it is 

moving along the radial direction towards O. Then equation (53) 

yields 

2

 
 .

( ) 2[1 ( 8)]

dt c dr

R t cr
=

+         
(55) 

 

Now we suppose that the light ray leaves G at time 
1

t  and reaches 

Oat time 
0

t  such that
0 1

t t> .Then above equation (55) gives  

0

1 1

0

12
( ) ,

( ) 2[1 ( 8)]

t

t r

dt cdr
f r

R t cr
= =∫ ∫

+
 (say).                                         (56) 
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Next we suppose that the light ray is emitted through G at time 

1 1
t tδ+  and arrived at O at time 

0 0
.t tδ+ Then again this leads to 

similar equation (56), which is given by 

 

i.e. 
0 0

1 1

1
( ) ,

( )

t t

t t

dt
f r

R t

δ

δ

+

+

=∫
        

(57) 

 

which further can be written as 

 
0 0 01

1 1 1 0

1
( ) ,

( ) ( ) ( )

t t tt

t t t t

dt dt dt
f r

R t R t R t

δ

δ

+

+

+ + =∫ ∫ ∫
       

(58) 

 

The result from elementary calculus gives 

 

( ) ( )  ,
t t

t

F t dt F t t
δ

δ
+

=∫
        

(59) 

 

where F(t) varies very little over a small interval .tδ  

From equations (56-58), we get 

 

1 1

0 0

( )
  .

( )

t R t

t R t

δ

δ
=

         
(60) 

 

Let 
1

λ ,
1

υ  be the wave length and frequency respectively of the 

light ray emitted from G at time 
1
,t and 

0
λ ,

0
υ  denote the corres-

ponding quantities of the same light ray observed at O. Then we 

have 

 

0 1 1

1 0 0

 ,
t

t

υ λ δ

υ λ δ
= =

         
(61) 

 

and with the relation (60), we write 

 

1 1

0 0

( )
 .

( )

R t

R t

λ

λ
=

         
(62) 

 

A red shift parameter z  is defined as 

 

0 1 1
( )  ,z λ λ λ= −          (63) 

 

which with the relation (62), yields 

 

0 1
[ ( ) ( )] 1 .z R t R t= −         (64) 

 

From equation (64), we opined the red shift if 0z >  means 
0 1

λ λ>  

and we arrived at blue shift if 0z <  means 
0 1

.λ λ< For expanding 

universe the radius of universe ( )R t  is monotonic increasing 

function of time t, so that 
0 1

( ) ( )R t R t> , 
0 1

t t> ,when the universe is 

expanding and in this situation we get a red shift. For the contract-

ing universe, the radius of the universe ( )R t  is monotonic de-

creasing function of time t, and then we get 
0 1

( ) ( ) R t R t< for con-

tracting universe and the relation (64) gives the blue shift. These 

are observations which have been observed in our model (28) in 

BTG regarding red shift and blue shift which are resembled to the 

results obtained in GR.  

4.5. Deceleration parameter and Hubble’s parameter  

The deceleration parameter q is given by 

 

2

 R

R

R
q = −

&&

&
 

 

and in our model (28), it has value  

2

1

1   ,
( )

2

c
q

ctb
= − −

+
        

(65) 

where
1

b is the constant of integration. For the large value of t, the 

deceleration parameter q admits the value ( 1)−  which is close to 

the value ( 0.77)≈ −  at present epoch predicted by the observations 

of [44-48].Thus, our FLRW model (28) in Bimetric theory of gra-

vitation is found to be in an accelerating phase for large value of t.  

The Hubble’s parameter H for our model (28) is given by 

 

H R R= &  

 

and in our model it has value 

 

1

1
 .

2 2

ct
H b

 
= +            

(66) 

 

The Hubble’s parameter H is directly proportional to time t in our 

model whereas it is inversely proportional to time t occurring in 

the most of the works of [50-52] etc. It is increasing continuously 

with time so that the rate of expansion in the model is continuous-

ly increasing. In particular, for
1

0a =  we get 

 

0 ,c = 1q = −  and 
1

2  ,H b=         (67) 

 

from which, it is clear that the model is flat which has an accele-

rating phase always and expanding with constant rate of expansion 

for 
1

0.a =  

5. Summary 

• The FLRW model has been derived in Bimetric theory of 

gravitation by solving the Rosen’s field equations. It is seen 

that our model in BTG is agreed with FLRW model in GR 

with the value of constant 22 ,c k a=  where    1,   0,   1k = −

corresponding to closed, flat and open universe.  

• It is observed that the geometry of FLRW model in BTG is 

matched with that of the geometry of the FLRW model in 

GR. 

• In regards with different co-ordinate transformations, the 

geometrical features of our model in BTG are same as that 

of geometrical features of FLRW model in GR. 

• It is realized that the motion of particle at rest, along radial 

direction and general motion of test particle in our model in 

BTG follows the same path as that of the motions in FLRW 

model in GR. 

• It is observed that in our BTG model, the light trajectory 

follows the same path as that of FLRW model in GR, in par-

ticular for 
1

0a = and not in general case for non-zero
1
.a For 

the case 
1

0a = we get 0 ,c = 1q = −  and 
1

2H b=  which 

shows that our model is flat, has an accelerating phase al-

ways and expanding with constant rate of expansion in the 

case for 
1

0.a =   

• We have observed the red shift and the blue shift of the 

spectrum in our model in BTG which are resembled to the 

results obtained in GR. 

• It is realized that our model in BTG has an accelerating ex-

pansion at late times which is not in GR. In GR, FLRW 

model may or may not be accelerating at late times. 

• The rate of expansion in the model is continuously increas-

ing. The Hubble’s Parameter H is a function of time t which 

is directly proportional to t in our model whereas it is in-

versely proportional to time t in most of the results of [50-

52] etc. We observed that the rate of expansion in our model 

is continuously increasing with time t.  
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6. Conclusion 

In this paper, the FLRW line-element has been derived in Bimetric 

theory of gravitation by solving Rosen’s field equations, and it is 

found that the geometry of our model in BTG is similar to the 

geometry of FLRW model in GR. It is observed that for the par-

ticular value of constant 
1

0a = appearing in the expression for 

( )g t  in our model in BTG, our derived model becomes flat and it 

is always acceleratingly expanding with constant rate of expansion, 

which is not in GR. Other geometrical and physical aspects of the 

model have been carried out and it is realized that our model is 

having the similar features as that of FLRW model in GR in rela-

tion with co-ordinate transformations, motion of test particle at 

rest, along radial direction, general motion and light rays proper-

ties and red shift. 
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