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Abstract 
 

Progression of f-type family of periodic orbits, their nature, stability and location nearer the smaller primary for different mass ratios in 

the framework of circular restricted three-body problem is studied using Poincaré surfaces of section. The orbits around the smaller pri-

mary are found to decrease in size with increase in Jacobian Constant C, and move very close towards the smaller primary. The orbit 

bifurcates into two orbits with the increase in C to 4.2. The two orbits that appear for this value of C belong to two adjacent separate 

families: one as direct orbit belonging to family g of periodic orbits and other one as retrograde orbit belonging to family f of periodic 

orbits. This bifurcation is interesting. These orbits increase in size with increase in mass ratio. The elliptic orbits found within the mass 

ratio 0 < µ ≤ 0.1 have eccentricity less than 0.2 and the orbits found above the mass ratio µ > 0.1 are elliptical orbits with eccentricity 

above 0.2. Deviations in the parameters: eccentricity, semi-major axis and time period of these orbits with solar radiation pressure q are 

computed in the frame work of photogravitational restricted Three-body problem in addition to the restricted three-body problem. These 

parameters are found to decrease with increase in the solar radiation pressure. 

 
Keywords: Restricted Three-Body Problem; Poincaré Surfaces of Section; Solar Radiation Pressure; Sun-Jupiter System; Direct and Retrograde Periodic 

Orbit. 

 

1. Introduction 

Periodic orbits in planar circular restricted three-body problem 

(RTBP) play an important role in understanding the predominant 

properties of dynamical systems and have been very extensively 

studied in celestial mechanics. Szebehely [23] has an extended 

record of qualitative studies on restricted three-body problem. 

Poincaré surfaces of section (PSS) method is one of the productive 

methods which helps in computing periodicity, stability, ergodici-

ty characteristics of a trajectory [13]. There have been numerous 

studies directed at finding periodic and quasi-periodic orbits 

around the liberation points using PSS method. Some of the illus-

trious works on periodic, quasi-periodic and chaotic orbits and in 

locating stability regions in the RTBP were done by Broucke [3], 

Henon [9], Jefferys [10], Bruno [4], Smith & Szebehely [23]. 

Winter & Murray [27], [28], [29], [30] used this technique to ex-

plore the phase space of Sun-Jupiter system and to study the reso-

nance and chaos of the system. Sharma & Subba Rao [21], [22], 

Subba Rao & Sharma [24] and Sharma [18], [19], [20] have stud-

ied the perturbation effects on the Lagrangian points in the RTBP.  

Dutt & Sharma [6] determined the location of the periodic orbits 

and their stability in terms of maximum amplitude of oscillation. 

Dutt & Sharma [7] studied the evolution of periodic orbits in Sun-

Mars system using PSS method in the framework of Photogravita-

tional Restricted Three- Body Problem (PRTBP). Further, Beevi 

& Sharma [1] analysed the periodic orbits around Saturn-Titan 

system. Later, they continued the study by considering Saturn’s 

oblateness effect on the periodic orbits of that system [2]. Recent-

ly, Pushparaj & Sharma [15] studied the interior resonance period-

ic orbits in Sun-Jupiter system. 

The present work explores the location, nature and size of the 

periodic orbits in the framework of RTBP near smaller primary in 

Sun-Jupiter system using PSS method, whose mass ratio is µ = 

0.0009537284 [21]. Further, the study has been carried out for 

different mass ratios for certain values of Jacobi constant C to 

study the location, nature and size of these periodic orbits of fami-

ly f bifurcated from family g of periodic orbits in the RTBP [3], 

[4], [5]. Deviations in the parameters: eccentricity, semi-major 

axis and time period of these two families of periodic orbits with 

the effect of solar radiation pressure are also computed. These 

parameters are found to decrease with the increase in solar radia-

tion pressure. 

2. Equations of motion 

The radiation force on a particle, exerted by a radiating body, 

generally consists of three terms, namely the radiation pressure, 

the Doppler shift of the incident radiation and the Poynting drag 

(Poynting [14], Robertson [17]). The first two act radially and the 

third one acts opposite to the velocity vector. The latter two com-

ponents are caused by absorption and subsequent reemission of 

radiation and constitute Poynting-Robertson effect. Radzievskii 

[16] pointed out that this effect is negligible and that the only sig-

nificant force is radiation pressure. After that Radzievskii’s model 

has been utilized in a large number of studies. 

The effect of radiation pressure of a source can be expressed by a 

mass reduction factor q =1 - ɛ, where the radiation coefficient ɛ, is 

the ratio of the force Fp which is caused by radiation to the force 

Fg which results from gravitation, that is ɛ = Fp/Fg , q is expressed 
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in terms of particle radius ‘a’, density ‘δ’ and radiation pressure 

efficiency ‘χ’ (in cgs system). 

q= 1 −
5.6 ×10−5

aδ
χ . 

 

Knowing the mass and the luminosity of the radiating body, ɛ can 

be found for any given radius and density. Solar radiation pressure 

force Fp changes with distance by the same law of gravitational 

attraction force Fg and acts opposite to it. Thus, the Sun’s result-

ing force acting on the particle is (Sharma [20]; Kalvouridis et al. 

[11]) 

 

F = Fg − Fp = (1 −
Fp

Fg
) Fg = Fp(q). 

 

If q=1, the radiation pressure has no effect. If q < 0, then radiation 

surpasses gravity and if 0 <q ≤1, gravitational force exceeds radia-

tion.  

In the dimensionless synodic coordinate system Oxy with origin 

of the system positioned on the centre of mass of the primaries, 

the more massive and smaller primary lie on the Ox-axis at (- ,0 ) 

and (1- ,0 ), respectively. The equations of motion of the third 

body are (Sharma [20]) 

 

ẍ − 2�̇� =
𝜕Ω

𝜕𝑥
,                                                                                  (1) 

 

ÿ + 2�̇� =
𝜕Ω

𝜕𝑦
,                                                                                  (2) 

 

where 

 

Ω =  
1

2
(x2 + y2) +

q(1−𝜇)

r1
+ 

𝜇

 r2
,                                                  (3) 

 

r1
2 = (𝑥 + 𝜇)2 + 𝑦2, r2

2 = (𝑥 − 1 + 𝜇)2 + 𝑦2. 

 

The Jacobi integral is given by 

 

ẋ2 + �̇�2 = 2Ω − 𝐶.                                                                        (4) 

3. Poincaré Surfaces of Section and stability of 

the periodic orbits  

PSS is a widely used technique in locating the periodic, quasi-

periodic and chaotic orbits. To determine the orbital elements of 

the test particle at any instant it is necessary to know its initial 

position (x, y) and velocity (ẋ, ẏ), which corresponds to a point in 

a four-dimensional phase space. We have constructed surfaces of 

sections in the x, ẋ plane. The initial values were selected along 

the Ox-axis by using intervals of length between 0.0001 and 

0.01.The magnitude of velocity vector was determined from Jaco-

bian constant C which is a function of the velocity vector. Moreo-

ver, the fine discretization of position along the x-axis guarantees 

an extensive coverage of phase plane since each trajectory, regard-

less of the complexity of its motion, has a unique path through the 

phase plane. By defining the plane, say y=0, resulting in three-

dimensional space, the values of x and ẋ can be plotted every time 

the particle has y=0, whenever trajectory intersects the plane in a 

particular direction, say ẏ > 0. 

Kolmogorov-Arnold-Moser (KAM) theory provides the stability 

condition for the periodic orbits in the planar restricted three-body 

problem. PSS are used to know the regular and chaotic behavior of 

a trajectory. For a regular trajectory, there exists a stable region of 

islands in the PSS or a curve shrinks to a point then there is exist-

ence of a periodic orbit. Any irregular distribution of points on 

PSS describes that the trajectory is chaotic in behavior. In general, 

regular regions of PSS are defined by periodic orbits and sur-

rounded by an area of quasi-periodic orbits. The regular regions 

can be interpreted as regions of stability in the sense that outside 

them the motion is unstable or chaotic in nature and inside them 

the motion is regular.  

4. Periodic orbit around Jupiter in Sun-

Jupiter system 

The initial conditions for numerical integration are chosen for a 

constant solar radiation pressure and different values of C. Fourth-

order fixed step size Runge-Kutta-Gill method is used to integrate 

the equations of motion (1) and (2) to generate the PSS. With the 

same value of C, the distance interval (Δx) for each of the two 

starting conditions is provided as input and integration has been 

performed for different values of µ without considering any per-

turbations such as oblateness or radiation pressure. In the case of 

Sun-Jupiter system, we have generated the PSS for the mass ratio 

µ = 0.0009537284 with different values of C (3.0 to 4.0). The 

periodic orbits around Jupiter located from PSS are shown in 

Figs.1a to 1d.  

 

 

(A) 

 
 

 

 

(B) 
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Fig. 1: Poincaré Surfaces of Section for Sun-Jupiter System with Various Values of C and Constant Value of q=1and Periodic Orbits around Jupiter: (A) 

C=3.0, X=0.9609; (B) C=3.1, X=0.9914; (C) C=3.5, X=0.9972; (D) C=4.0, X=0.9981. 
 

It is found that the size of the periodic orbits around Jupiter de-

creases with the increase in C as shown in Fig. 2 and move to-

wards Jupiter and collide with it at C=4. Further, with the increase 

in the value of C to 4.2, this orbit bifurcates into two orbits at lo-

cations x1 = 0.9983 and x2 =0.9998; first one as retrograde orbit 

and the second one as direct orbit, as shown in Fig. 3. This shows 

that a new family of periodic orbit bifurcates from the original one 

which is contradictory to the properties of orbits. The direct peri-

odic orbit belongs to the g type family of periodic orbits and the 

bifurcated retrograde orbit belongs to the f type family of periodic 

orbits (Szebehely [25]). 

In the present dynamical system, the KAM tori near the smaller 

primary is used to measure the degree of stability of the periodic 

orbits around Jupiter with respect to the region around it in the 
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phase space. Fig. 4 provides the location of periodic orbit as a 

function of the Jacobi constant. These results are generated from 

the Poincaré surfaces of section, considering the size of the islands 

near Jupiter in the line of conjunction for each Jacobi constant C. 

In Fig.4, the straight line corresponds to the leftmost tip and the 

dotted line corresponds to the rightmost tip of the island near Jupi-

ter in the PSS of the Sun-Jupiter system. As seen from the figure, 

the degree of stability of the periodic orbits is seen to be maximum 

at around C=3.02. 

 

 

 
Fig. 2: Variation of Periodic Orbit around Jupiter for different values of C at q=1. 

 

  
Fig. 3: At C=4.2 and q=1, Blue represents the retrograde periodic orbit at 

X1=0.9983 and Red represents the direct periodic orbit at X2=0.9998. 
Fig. 4. Width of KAM Tori and Location of Periodic Orbits for the Sun-
Jupiter System at q=1. 

 

5. Variation of bifurcated family of f type pe-

riodic orbits from g type periodic orbit for 

different values of µ 

To study these orbits, we have generated PSS for one value of C at 

a time with µ varying from 0.01 to 0.5, as shown in Figs. 5a to 5f. 

The periodic orbits for 0 < µ ≤ 0.1 are found to be elliptic orbits 

with eccentricity less than 0.2, as shown in Figs. 5a to 5b and 

those found for µ > 0.1 are elliptic orbits with eccentricity greater 

than 0.2, as shown in Figs. 5c to 5f. 
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(D) 

 
 

(E) 

 
 

(F) 

 
Fig. 5: Poincaré Surfaces of Section for Jacobi Constant C=4.2 , q=1 and the Periodic Orbits (Red- Family G; Blue- Family F) for Different Mass Ratios: 

(A) µ=0.01 and X1=0.9806, X2=0.9998; (B) µ=0.1 and X1=0.8366, X2=0.9681; (C) µ=0.2 and X1=0.7023 , X2=0.9356; (D) µ=0.3 and X1=0.5800 , 

X2=0.8725; (E) µ=0.4 and X1=0.4631 , X2=0.8022; (F) µ=0.5 and X1=0.3492 , X2=0.7291. 
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Fig. 6a: Variation of Semi-Major Axis of new Periodic Orbits with mass ratio when q=1. 

 

 
Fig. 6b: Variation of Eccentricities of new Periodic Orbits with mass ratio when q=1. 

 

 
Fig. 7: Location of the new Periodic Orbits with various mass ratio µ up to 0.5 when q=1. 

 

The size and eccentricity of these periodic orbits increases with 

increase in µ, as shown in figures 6a, 6b.  

Fig. 7 provides the locations of the new periodic orbits for µ up to 

0.5 for constant Jacobi constant C and radiation pressure q. It is 

noted that, family f as well as family g periodic orbits and the 

distance between them increases with increase in µ. 

6. Effect of solar radiation pressure on semi-

major axis and eccentricity on the bifurcat-

ed families of periodic orbits 

To study the effect of solar radiation pressure on the orbital pa-

rameters of the new orbits, the more massive primary is consid-

ered as a source of radiation. Graphs have been plotted for varia-



76 International Journal of Advanced Astronomy 

 
tion of semi-major axis with different values of µ and the effect of 

radiation pressure is also represented. Figs. 10 and 11 show the 

effect of radiation pressure on the semi-major axis of periodic 

orbits with mass ratio variation. It is seen that the effect of radia-

tion pressure decreases the size of semi-major axis for both fami-

lies of periodic orbits for different values of µ. The variation of 

eccentricity and semi-major axis of both: retrograde and direct 

orbits with radiation pressure effects have been computed and are 

shown in Tables 1-4. 

 

 

 
Fig. 10: Effect of Radiation Pressure on Semi-Major Axis of Retrograde Orbit for varying µ. 

 

 
Fig. 11: Effect of Radiation Pressure on Semi-Major Axis of Direct Orbit for varying µ. 

 
Table 1: Semi-Major Axis of Retrograde Orbit for Various µ with Radiation Pressure 

µ                   q→    1 0.995 0.99 0.985 0.98 0.975 

0.000953728 0.0008 0.0008 0.0008 0.0008 0.000764 0.000754 

0.012131429 0.00955 0.009469 0.00942 0.009332 0.009263 0.009195 

0.05 0.03898 0.03872 0.03841 0.03813 0.03785 0.03757 
0.104323953 0.05934 0.05899 0.05865 0.05831 0.05805 0.05775 

0.15 0.08377 0.0834 0.08302 0.08265 0.08236 0.0819 

0.2 0.0987 0.09833 0.09804 0.09759 0.09723 0.09686 
0.25 0.1109 0.1106 0.1102 0.1099 0.1096 0.1092 

0.3 0.1214 0.121 0.1207 0.1204 0.1201 0.1197 

0.35 0.1304 0.13 0.1297 0.1294 0.1291 0.1288 
0.4 0.1385 0.1382 0.1379 0.1376 0.1373 0.1371 

0.45 0.1457 0.1454 0.1452 0.1449 0.1446 0.1444 
0.5 0.1524 0.1522 0.1519 0.1517 0.1514 0.1512 

 
Table 2: Eccentricity of Retrograde Orbit for Various µ with Radiation Pressure 

µ                   q→ 1 0.995 0.99 0.985 0.98 0.975 

0.000953728 0.164512 0.202655 0.238062 0.268606 0.298661 0.337432 

0.012131429 0.052159 0.063317 0.065129 0.082743 0.052961 0.03296 

0.05 0.06403 0.078669 0.055873 0.03966 0.051383 0.032625 
0.104323953 0.068651 0.055218 0.041283 0.018519 0.097338 0.064432 

0.15 0.105786 0.103741 0.100461 0.10421 0.111114 0.098712 

0.2 0.110096 0.105636 0.118433 0.109785 0.109064 0.107376 
0.25 0.112179 0.112331 0.108452 0.112687 0.11284 0.108946 

0.3 0.118128 0.111168 0.114943 0.115086 0.11523 0.107989 
0.35 0.113992 0.107262 0.103754 0.103874 0.103994 0.104115 

0.4 0.113816 0.113939 0.110859 0.107676 0.049853 0.111181 

0.45 0.107859 0.101438 0.104828 0.101613 0.098277 0.101788 
0.5 0.102328 0.105538 0.09925 0.099315 0.09605 0.096114 
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Table 3: Semi-Major Axis of Direct Orbits for Various µ with Radiation Pressure 

µ                   q→ 1 0.995 0.99 0.985 0.98 0.975 

0.000953728 0.0008 0.0008 0.0008 0.000774 0.000767 0.000761 
0.012131429 0.009875 0.0098 0.009717 0.00965 0.009571 0.009484 

0.05 0.04553 0.04512 0.04472 0.04431 0.04391 0.04351 

0.104323953 0.07338 0.0798 0.07258 0.07218 0.07174 0.07134 
0.15 0.1162 0.1157 0.1152 0.1147 0.1141 0.1135 

0.2 0.1443 0.1434 0.1425 0.1416 0.1407 0.1398 

0.25 0.1686 0.1677 0.1667 0.1658 0.1649 0.164 
0.3 0.1898 0.1894 0.189 0.1886 0.1881 0.1875 

0.35 0.2085 0.2076 0.2068 0.2059 0.2051 0.2042 
0.4 0.2252 0.2244 0.2236 0.2228 0.222 0.2211 

0.45 0.2404 0.2396 0.2388 0.2381 0.2373 0.2365 

0.5 0.2541 0.2534 0.2527 0.252 0.2513 0.2506 

 
Table 4: Eccentricity of Direct Orbit for Various µ with Radiation Pressure 

µ                    q→ 1 0.995 0.99 0.985 0.98 0.975 

0.000953728 0.137513 0.184939 0.223299 0.244622 0.209968 0.166369 

0.012131429 0.071112 0.020202 0.059127 0.02879 0.066208 0.058014 

0.05 0.088833 0.086725 0.087111 0.084905 0.070739 0.071063 

0.104323953 0.12548 0.136192 0.14147 0.151214 0.15258 0.157465 
0.15 0.212346 0.226243 0.235855 0.246866 0.252594 0.253246 

0.2 0.259673 0.26047 0.259979 0.259479 0.257642 0.255767 
0.25 0.292041 0.291831 0.290718 0.290497 0.290274 0.290047 

0.3 0.313321 0.320638 0.032867 0.335779 0.341379 0.344826 

0.35 0.326828 0.32682 0.32813 0.327428 0.328048 0.327339 
0.4 0.334218 0.335422 0.336004 0.33596 0.032562 0.335311 

0.45 0.339174 0.339144 0.339114 0.339597 0.339567 0.338953 

0.5 0.337339 0.337851 0.337753 0.338208 0.331109 0.338569 

 

7. Conclusion 

Using Poincaré surfaces of section method, we have studied the 

presence of a bifurcated family f periodic orbits from family g 

periodic orbits for various mass ratios in the photogravitational 

circular restricted three-body problem. We have determined the 

nature, stability and size of these orbits depending on the Jacobian 

constant. These periodic orbits belong to the adjacent separate 

families of periodic orbits: family g and family f orbits. As the 

Jacobian constant increases, these orbits gradually move away 

from the smaller primary. We study the evolution of these bifur-

cated f family periodic orbits that are around the smaller primary 

by increasing the value of Jacobi constant. This study shows that 

increase in µ increases the size of these periodic orbits for some 

values of Jacobian constant. These families of periodic orbits 

found within 0 < µ ≤ 0.1 have eccentricity less than 0.2 and those 

found for µ > 0.1 are elliptic orbits with eccentricity greater than 

0.2. These orbits are found in the three systems: Pluto-Charon 

(µ=0.104323953), Earth-Moon (µ=0.012131429) and Sun-Jupiter 

(µ=0.000953728) in the solar system when C > 4 without consid-

ering any perturbation effects. With inclusion of solar radiation 

pressure, the deviations in the parameters: semi-major axis, eccen-

tricity and time period of these families of periodic orbits are 

found. 

References 

[1] Beevi, A.S. & Sharma, R.K. (2011) Analysis of periodic orbits in 

the Saturn-Titan system using the method of Poincare section sur-

faces. Astrophysics and Space Science 333, 37-48. 
https://doi.org/10.1007/s10509-011-0630-0. 

[2] Beevi, A.S. & Sharma, R.K. (2012) Oblateness effect of Saturn on 
periodic orbits in Saturn- Titan restricted three-body problem. As-

trophysics and Space Science 340, 245-261. 

https://doi.org/10.1007/s10509-012-1052-3. 
[3] Broucke, R.A. (1968) Periodic orbits in the restricted three-body 

problem with Earth-Moon masses. Pasadena, CA: Jet Propulsion 

Lab. 
[4] Bruno, A. (1990) The Restricted 3-Body Problem. Plane Periodic 

Orbits. Nauka, 296. 

[5] Bruno, A. & Varin, V. (2006) On families of periodic solutions of 
the restricted three-body problem. Celestial Mechanics & Dynam-

ical Astron. 95, 27-54. https://doi.org/10.1007/s10569-006-9021-1. 

[6] Dutt, P. & Sharma, R.K. (2010) Analysis of periodic and quasi-

periodic orbits in the Earth- Moon system. Journal of Guidance, 
Control and Dyn. 33, 1010-1017. https://doi.org/10.2514/1.46400. 

[7] Dutt, P. & Sharma, R.K. (2011) Evolution of periodic orbits near 

the Lagrangian point L2. Advances in Space Res. 47, 1894-1904. 

https://doi.org/10.1016/j.asr.2011.01.024. 

[8] Dutt, P. & Sharma, R.K. (2011) Evolution of Periodic Orbits in the 
Sun-Mars system. Journal of Guidance, Control and Dyn. 34, 635-

644. https://doi.org/10.2514/1.51101. 

[9] Hénon, M. (1969) Numerical exploration of the restricted problem. 
V.Astron.Astrophys. 1, 223-238. 

[10] Jefferys, W. H. (1971) An Atlas of Surface of Section for the Re-

stricted Problem of Three bodies. Austin,Texas: Dept. of Astrono-
my,University of Texas. 

[11] Kalvouridis, T., Arribas, M. & Elipe, A. (2007) Parametric Evolu-

tion of Periodic Orbits in Restricted Four-Body Problem with Radi-
ation Pressure. Planetary and Space Sci. 55, 475-493. 

https://doi.org/10.1016/j.pss.2006.07.005. 

[12] Murray, C.D. & Dermott, S.F. (1999) Solar System Dynamics. 
Cambridge: Cambridge University Press. 

[13] Poincaré, H. (1892) Les Methodes Nouvellas de la Mechanique 

Celeste (Vol. 1). Paris: Gauthier-Villars. 
[14] Poynting, J. (1904) Radiation in the Solar system: It’s Effect on 

Temperature and its pressure on Small Bodies. Philosophical 

Transactions of the Royal Society of London.Series A, Physical 
Sciences and Engineering 202, 525-552. 

https://doi.org/10.1098/rsta.1904.0012. 

[15] Pushparaj, N. and Sharma, R.K. (2017) Interior Resonance Periodic 
Orbits in the Photogravitational Restricted Three-Body Problem. 

Advances in Astrophys. 2, 25-34. 

[16] Radzievskii, V. (1950) The Restricted problem of Three Bodies 
Taking Account of Light Pressure. Akademii Nauk USSR, Astro-

nomicheskii Zhurnal 27, 250-256. 

[17] Robertson, H. (1937) Dynamical Effects of Radiation in the solar 
system. Monthly Noties of the Royal Astronomical Society 97, 

423-438. https://doi.org/10.1093/mnras/97.6.423. 

[18] Sharma, R.K. (1975) Perturbations of Lagrangian points in the re-
stricted three-body problem, Indian J Pure and Appl. Math. 6, 1099-

1102. 

[19] Sharma, R.K. ( 1982) On linear stability of triangular libration 
points of the photogravitational three-body problem when the more 

massive primary is an oblate spheroid, Sun and Planetary System, 

W. Fricke and G. Teleki (Eds.), D. Reidel Publishing Co., Dor-
drecht, Holland, 435-436. 

[20] Sharma, R.K. (1987). The linear stability of libration points of the 

photogravitational restricted three-body problem when the smaller 
primary is an oblate spheroid, Astrophys. And Space Sci. 135, 271-

281. https://doi.org/10.1007/BF00641562. 

https://doi.org/10.1007/s10509-011-0630-0
https://doi.org/10.1007/s10509-012-1052-3
https://doi.org/10.1007/s10569-006-9021-1
https://doi.org/10.2514/1.46400
https://doi.org/10.1016/j.asr.2011.01.024
https://doi.org/10.2514/1.51101
https://doi.org/10.1016/j.pss.2006.07.005
https://doi.org/10.1098/rsta.1904.0012
https://doi.org/10.1093/mnras/97.6.423
https://doi.org/10.1007/BF00641562


78 International Journal of Advanced Astronomy 

 
[21] Sharma, R. K. & Subba Rao, P.V. (1976) Stationary solutions and 

their characteristic exponents in the restricted three-body problem 

when the more massive primary is an oblate spheroid. Celestial 

Mech. 13, 137-149. https://doi.org/10.1007/BF01232721. 

[22] Sharma, R. K. & Subba Rao, P.V. (1986) on finite periodic orbits 
around the equilateral solutions of the planar restricted three-body 

problem, International workshop on Space Dynamics and Celestial 

mechanics, November 1985, Delhi, India, K. B. Bhatnagar (Ed), D. 
Reidel Publishing Co., Dordrecht, Holland, pages 71-85. 

https://doi.org/10.1007/978-94-009-4732-0_8. 
[23] Smith, R. H., & Szebehely, V. (1993) the onset of chaotic motion in 

the restricted problem of three bodies. Celest. Mech. 56, 409-425. 

https://doi.org/10.1007/BF00691811. 
[24] Subba Rao, P. V. & Sharma R. K. (1988) Oblateness effect on fi-

nite periodic orbits at L4, IAF-88-300, 5 pages, 39th Congress of 

the International Astronautical Federation, October 1988, Banga-
lore, India. 

[25] Szebehely, V. (1967) Theory of Orbits. San Diego: Academic Press. 

[26] Voyatzis, G., Kotoulas, T. & Hadjidemetriou, J. D. (2005) Symmet-
ric and nonsymmetric periodic orbits in the exterior mean motion 

resonances with Neptune. Celestial Mechanics and Dynamical As-

tronomy, 91, 191-202. https://doi.org/10.1007/s10569-004-0891-9. 
[27] Winter, O. C. & Murray, C. D. (1994b) Atlas of the Planar, Circular, 

Restricted Threebody Problem: External orbits. Queen Mary and 

Westfield College,London: QMW Maths Notes. 
[28] Winter, O. C. & Murray, C. D. (1994a) Atlas of the Planar, Circular, 

Restricted Threebody Problem: Internal orbits. Queen Mary and 

Westfield College, London: QMW Maths Notes. 
[29] Winter, O. C. & Murray, C. D. (1997a) Resonance and chaos. I. 

First-order interior resonances. Astronomy and Astrophys. 319, 

290-304. 
[30] Winter, O. C. & Murray, C. D. (1997b). Resonance and chaos. II. 

Exterior resonances and asymmetric libration. Astronomy and As-

trophys. 328, 399-408. 
[31] Zotos, E. E. (2015) Crash test for the Copenhagen problem with 

oblateness. Celest Mech & Dyn Astron. 122, 75-99. 

https://doi.org/10.1007/s10569-015-9611-x. 

https://doi.org/10.1007/BF01232721
https://doi.org/10.1007/978-94-009-4732-0_8
https://doi.org/10.1007/BF00691811
https://doi.org/10.1007/s10569-004-0891-9
https://doi.org/10.1007/s10569-015-9611-x

