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Abstract 
 

The circular Restricted Three Body Problem is considered with the more massive primary as an oblate spheroid and source of radiation. 

A new mean motion expression given by n2=1+6A is used in the present study, when the secular effect of the oblateness on the mean 

motion, argument of perigee and right ascension of the ascending node is considered. The locations of the collinear Lagrangian points are 

found. It is found to have some variation from the previous study conducted on the same because of the new mean motion that is consid-

ered in this study. The variations of the location of the Lagrangian points due to the unperturbed as well as the perturbed problem due to 

oblateness and radiation pressure are studied. A study on the eccentricity e and angular frequency s at L1, L2 and L3 is carried out. It is 

observed how the change in effect of oblateness and radiation pressure has affected the location, angular frequency and eccentricity at L3, 

though there are only small changes noticed in the case of L1 and L2. 
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1. Introduction 

The restricted three-body problem describes the motion of an infinitesimal mass moving under the gravitational effect of the two finite 

masses, called primaries, which move in circular orbits around their center of mass on account of their mutual attraction and the infinites-

imal mass not influencing the motion of the primaries. The RTBP (restricted three-body problem) possesses five stationary solutions 

called Lagrangian points, three of which are called collinear equilibria, lie on the line joining the primaries and the other two called equi-

lateral equilibria make equilateral triangles with primaries. In general, the collinear equilibria are unstable while equilateral points are 

stable only in a certain region for the mass parameter. The shapes of the participating bodies in the RTBP are assumed to be oblate. The 

oblateness of a body can produce perturbation deviation from the two-body motion. In the RTBP it is assumed that the infinitesimal mass 

moves under the mutual gravitational force of the primaries. In RTBP when at least one of the interacting bodies is an intense emitter of 

radiation the repulsive force of the radiation pressure is considered. In the RTBP the origin is considered to be the center of mass of the 

two finite mass bodies and take axes rotating with the masses, such that they lie along the x-axis. In the dimensionless system of varia-

bles µ1 and µ2 represents the masses of the primaries and the sum of two masses is therefore unity and whose distance are also unity. In 

this study the larger mass is taken on the right side. The book of Szebehely (1967) provides systematic coverage of the literature on the 

subject as well as derivations of some of the important results. 

Various authors have made studies on Lagrangian points in the restricted three-body problem by considering the more massive primary 

or both primaries as source of radiation. Some of the important contributions are by Radzievsky (1950, 1953), Chernikov (1970). Some 

of the significant studies carried out related to the Lagrangian points by considering the oblateness of one or both the primaries with their 

equatorial planes coincident with the plane of motion, are by Vidyakin (1974), Sharma (1975), Subba Rao & Sharma (1975), Sharma & 

Subba Rao (1975, 1976, 1978). 

In this paper we study the RTBP when the more massive primary is a source of radiation as well as an oblate spheroid. A study on the 

same had been done by (Namboodiri et al. 2008) but with the mean motion value of 1+3A/2. In this paper when the secular effect of the 

oblateness on the mean motion, argument of perigee and right ascension of the ascending node is considered the mean motion is taken to 

be 1+6A derived analytically by (Sharma et al. 2020). We have derived the expressions for locations of the collinear points and a numer-

ical study on the effect of oblateness and radiation pressure is carried out. We have also carried out study on the effect of oblateness and 

radiation pressure on the angular frequency and eccentricity with new mean motion. 

http://creativecommons.org/licenses/by/3.0/
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2. Equation of motion 

In the dimensionless synodic coordinate system (x, y), the equations of motion are (Szebehely 1967) 

 

ẍ−2nẏ=
∂Ω

∂x
, 

 

ÿ+2nẋ=
∂Ω

∂y
,                                                                                                                                                                                                       (1) 

 

Where 

 

Ω = 
n2

2
[(1 − μ)r1

2 + μr2
2] +

q(1−μ)

r1
+

μ

r2
+

q(1−μ)A

2r1
3 .                                                                                                                                        (2) 

 

With r1
2 = (x − μ)2 + y2, r2

2 = (x + 1 − μ)2 + y2, n2=1+6A. 

The mass parameter µ = m1 / (m1 + m2), where m1 and m2 are the masses of the primaries m1 > m2, such that m1 + m2 = 1 the oblateness 

coefficient A =
AE2−AP2

5R2
, where AE and AP are the dimensional equatorial and polar radii of the more massive primary and R is the dis-

tance between the primaries. The term q is due to radiation pressure. If q =1, then there is no effect of radiation pressure. For equilibrium 

points Ωx = Ωy = 0 

Therefore 

 

n2x −
q(1−μ)(x−μ)

r1
3 −

μ(x−μ+1)

r2
3 −

3Aq(1−μ)(x−μ)

2r1
5 = 0,                                                                                                                                      (3) 

 

y [n2 −
q(1−u)

r1
3 −

u

r2
3 −

3Aq(1−u)

2r1
5 ] = 0.                                                                                                                                                             (4) 

3. Location of collinear equilibrium points 

When y = 0, eq. (                                                                                                                                      (3) determines the locations of the 

collinear points L1(x1,0), L2(x2,0), L3(x3,0), where 

 

x1 = µ – 1 – ξ1, x2 = µ – 1 + ξ2, x3 = µ + ξ3.                                                                                                                                                    (5) 

 

ξ1, ξ2, ξ3 satisfies the seventh-degree polynomials 

 

(12𝐴 + 2)𝜉1
7 + [(−12𝐴 − 2)𝜇 + 60𝐴 + 10]𝜉1

6 + [(−48𝐴 − 8)𝜇 + 120𝐴 + 20]𝜉1
5 + [(2𝑞 − 72𝐴 − 14)𝜇 − 2𝑞 + 120𝐴 + 20]𝜉1

4 +
[(4𝑞 − 48𝐴 − 16)𝜇 − 4𝑞 + 60𝐴 + 10]𝜉1

3 + [[(3𝐴 + 2)𝑞 − 12𝐴 − 14]𝜇 + (−3𝐴 − 2)𝑞 + 12𝐴 + 2]𝜉1
2 − 8𝜇𝜉1 − 2𝜇 = 0,                     

(6) 

 

(12A + 2)ξ2
7 + [(12A + 2)μ − 60A − 10]ξ2

6 + [(−48A − 8)μ + 120A + 20]ξ2
5 + [(−2q + 72A + 10)μ + 2q − 120A − 20]ξ2

4 +
[(4q − 48A)μ − 4q + 60A + 10]ξ2

3 + [[(−3A − 2)q + 12A − 10]μ + (3A + 2)q − 12A − 2]ξ2
2 + 8μξ2 − 2μ = 0,                               (7) 

 

(12A + 2)ξ3
7 + [(12A + 2)μ + 24A + 4]ξ3

6 + [(24A + 4)μ + 12A + 2]ξ3
5 + [(2q + 12A)μ − 2q]ξ3

4 + (4qμ − 4q)ξ3
3 + [(3A + 2)qμ +

(−3A − 2)q]ξ3
2 + (6Aqμ − 6Aq)ξ3 + 3Aqμ − 3Aq = 0.                                                                                                                              (8) 

 

 
Fig. 1: Graph Showing the Variation of Location of L1 versus µ. 
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Fig. 2: Graph Showing the Variation of Location of L2 Versus µ. 

 

 
Fig. 3: Graph Showing the Variation of Location of L3 versus µ. 

 

Fig, 1, 2 and 3 provides the locations of the collinear points L1, L2 and L3 for µ from 0 to 0.5 for different values of A1 and q. In Fig. 1it 

is noted that the collinear point L1 comes nearer to the primaries with the increase in oblateness and radiation pressure, and also it is not-

ed that at smaller values of mass parameter µ, the location moves away from the primaries, but moves towards the primaries for the val-

ues of µ above 0.2. In Fig. 2 it is seen that L2 move away from the more massive primary with the increase in oblateness and come nearer 

to it with the increase in radiation pressure. Fig. 3 shows that L3 moves closer to the primaries with the increase in oblateness and radia-

tion pressure. 

4. Variational equations and characteristic exponents 

The variational equations in the linear analysis becomes 

 

ξ" − 2nη′ = Ωxx(a, b)ξ + Ωxy(a, b)η, 

 

η" + 2nξ′ = Ωxy(a, b)ξ + Ωyy(a, b)η.                                                                                                                                                           (9) 

 

The characteristic equation of (9) is given by 

 

λ4 + (4n2 − Ωxx − Ωyy)λ2 + ΩxxΩyy − Ωxy
2 = 0.                                                                                                                                     (10) 

 

At the collinear points, we get 

 

Ωxx = n2 +
2q(1−μ)

r1
3 +

2μ

r2
3 +

6q(1−μ)A

r1
5 > 0,  

 

Ωxy = 0,  

 

Ωyy = n2 −
q(1−μ)

r1
3 −

μ

r2
3 −

3q(1−μ)A

2r1
5 < 0.  

 

Consequently, ΩxxΩyy − Ωxy
2 < 0. 

We can note that the roots λi(i = 1,2,3,4)  of the characteristic equation                                                                                                                                      

(10) are 
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λ1,2 = ± [−β1 + (β1
2 + β2

2)
1

2]

1

2
= ±λ, 

 

λ3,4 = ± [−β1 − (β1
2 + β2

2)
1

2]

1

2
= ±is, 

 

Where 

 

β1 = 2 −
Ωxx+Ωyy

2
, 

 

β2
2 = −ΩxxΩyy > 0.  

 

It is noted that λ1,2are real and λ3,4 are pure imaginary. Hence, in general case the collinear equilibria are unstable. The eccentricity of the 

periodic orbit is given by e = √1 − β3
−2. 

 

Where 

 

β3 = (s2 + Ωxx)/2ns.  
 

The angular frequency s is given by s = √β1 + √β1
2 + β2

2.  

 

 
Fig. 4: Graph Showing the Variation of Angular Frequency at L1. 

 

 
Fig. 5: Graph Showing the Variation of Angular Frequency at L2. 
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Fig. 6: Graph Showing the Variation of Angular Frequency at L3 

 

Fig. 4, 5 and 6 provide the angular frequencies s1, s2 and s3 at L1, L2 and L3, respectively for the mass parameter µ up to 0.5 for different 

values of A1 and q. It may be noted from Fig. 4 that the increase in the effect of oblateness and radiation pressure increases s1 values for 

L1. At lower values of μ the difference between the angular frequencies for radiation pressure is high but at higher values of μ the differ-

ence is less. From Fig. 5 it may be noted that the angular frequency s2 at L2 increases with oblateness and decreases with increase in radi-

ation pressure q. At lower values of μ the increase in s2 is noticeable but as the μ value increases the variation in s2 decreases. In Fig. 6 it 

is seen that, at L3 the increase in oblateness and radiation pressure increases s3. 

 

 
Fig. 7: Graph Showing the Variation of Eccentricity at L1 

 

 
Fig. 8: Graph Showing the Variation of Eccentricity at L2. 
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Fig. 9: Graph Showing the Variation of Eccentricity at L3. 

 

Fig. 7, 8 and 9 provide the eccentricity e1, e2 and e3 at L1, L2 and L3 for the mass parameter µ up to 0.5 for different values of A1 and q. It 

may be noted from Fig. 7 that at L1 the increase in oblateness and radiation pressure increases eccentricity, also as μ increases the eccen-

tricity decreases. It is seen from Fig. 8 that for L2 eccentricity increases with oblateness and decreases with increase in radiation pressure, 

also at μ < 0.1 the increase in eccentricity is very high but becomes almost constant for values of µ above 0.25. From Fig. 9 at L3 the 

eccentricity increases with oblateness and radiation pressure and the increase become linear at μ > 0.15. 

5. Conclusion 

A study on the effect of oblateness and radiation pressure on the location, angular frequency and the eccentricity of the conditional peri-

odic orbits at L1, L2 and L3 is carried out with the new mean motion n2 = 1 + 6A. The present study is different from the previous study 

conducted on the same with mean motion n2 = 1+3A/2 by (Namboodiri et al. 2008). In the current study the mean motion includes the 

secular effect of the oblateness on the mean motion, argument of perigee and right ascension of the ascending node. The effect of this 

new mean motion can be seen when the two studies are compared. It can be noticed how the change in effect of oblateness and radiation 

pressure has affected the location, angular frequency and eccentricity at L3, though the changes at L1 and L2 due to the effects of oblate-

ness and radiation is barely noticeable. 
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