Simple forms for coefficients in two families of ordinary differential equations

Feng Qi1,2,3,*

1Institute of Mathematics, Henan Polytechnic University, Jiaozuo, Henan, 454010, China
2College of Mathematics, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, China
3Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin, 300387, China
*Corresponding author’s e-mail: qifeng618@gmail.com

Abstract

In the paper, by virtue of the Faà di Bruno formula, properties of the Bell polynomials of the second kind, and the inversion formula for the Stirling numbers of the first and second kinds, the author finds simple, meaningful, and significant forms for coefficients in two families of ordinary differential equations.

Keywords: simple form; coefficient; ordinary differential equation; Faà di Bruno formula; Bell polynomial of the second kind; inversion formula; Stirling number

1. Motivation and main results

In [2, Theorems 2.1] and [3, Theorem 2.1], it was established inductively and recursively that the differential equations

\[(n-1)!e^{-nF(t)} = (-1)^{n-1} \sum_{k=1}^{n} \lambda^{n-k}(1+\lambda t)^{k}a_{k}(n)e^{kF(t)}(1)\]

and

\[F^{(n)}(t) = \frac{(-1)^{n-1}(n-1)!}{(1+\lambda t)^{n}} \sum_{k=1}^{n} \lambda^{n-k}H_{n-1,k-1}e^{-kF(t)}(2)\]

for \(n \in \mathbb{N}\) have the same solution

\[F(t) = \ln \left[1 + \frac{\ln(1+\lambda t)}{\lambda}\right],\]

where

\[a_{n}(n) = a_{1}(n) = 1, \quad H_{n,0} = 1, \quad H_{n,1} = H_{n} = \frac{1}{k!},\]

\[a_{k}(n) = \sum_{i_{1}+\cdots+i_{k}=0}^{n-k} \cdots \sum_{i_{1}+\cdots+i_{k}=0}^{n-k} \frac{n-k-i_{1} \cdots i_{k}}{i_{1}! \cdots i_{k}!}, \quad 2 \leq k < n,\]

\[H_{n,j} = \sum_{k=j}^{n} \frac{H_{k-1,j-1}}{k}, \quad 2 \leq j \leq n.\]

Hereafter, the expressions in (4) and (5) were employed in the whole papers [2, 3].

In this paper, since

1. the original proofs of [2, Theorems 2.1] and [3, Theorem 2.1] are long and tedious,

2. the expressions in (4) and (5) are too complicated to be remembered, understood, and computed easily,

we will provide a nice and standard proof for [2, Theorems 2.1] and [3, Theorem 2.1] and, more importantly, discover simple, meaningful, and significant forms for the quantities \(a_{k}(n)\) and \(H_{n,j}\).

Our main results can be stated as the following theorem.

Theorem 1. For \(k \in \mathbb{N}\), the function \(F(t)\) defined by (3) satisfies

\[F^{(n)}(t) = \left(\frac{\lambda}{1+\lambda t}\right)^{n} \sum_{k=1}^{n} \lambda^{n-k}(1+\lambda t)^{k}e^{-kF(t)}\]

and

\[\sum_{k=1}^{n} \lambda^{n-k}(1+\lambda t)^{k}S(n,k)F^{(k)}(t) = (-1)^{n-1}(n-1)!e^{-nF(t)},\]

where \(S(n,k)\) and \(S(n,k)\) stand for the Stirling numbers of the first and second kinds.

2. Proof of Theorem 1

The famous Faà di Bruno formula reads that

\[\frac{d^{n}}{dx^{n}}f \circ h(t) = \sum_{k=1}^{n} f^{(k)}(h(t))B_{n,k}(h'(t),h''(t),\ldots,h^{(n-k+1)}(t))\]

for \(n \in \mathbb{N}\), where the Bell polynomials of the second kind \(B_{n,k}(x_{1},x_{2},\ldots,x_{n-k+1})\) for \(n \geq k \geq 0\) are defined \([1, \text{p. 134, Theorem A}]\) and \([1, \text{p. 139, Theorem C}]\) by

\[B_{n,k}(x_{1},x_{2},\ldots,x_{n-k+1}) = \sum_{1 \leq i_{1} \leq \cdots \leq i_{k} \leq n} n! \sum_{1 \leq i_{1} \leq \cdots \leq i_{k}} \prod_{i=1}^{k} \frac{n!}{i_{1}! \cdots i_{k}!} \prod_{i=1}^{n-k+1} \left(\frac{x_{i}}{i!}\right).\]
Applying \(u = b(t) = \frac{\ln(1 + \lambda t)}{\lambda} \) and \(f(u) = \ln(1 + u) \) to (8) gives

\[
P^{(r)}(t) = \sum_{k=1}^{\infty} \frac{d^k \ln(1 + u)}{dt^k} B_{n,k} \left(\frac{1}{1 + \lambda t}, \ldots, \frac{(-1)^{n-k} \lambda^{n-k} (n-k)!}{(1 + \lambda t)^{n-k+1}} \right).
\]

In light of two identities

\[
B_{n,k}(\alpha x_1, \alpha x_2, \ldots, \alpha x_{n-k+1}) = \alpha^n B_{n,k}(x_1, x_2, \ldots, x_{n-k+1})
\]

and

\[
B_{n,k}(0!, 1!, 2!, \ldots, (n-k)!) = (-1)^{n-k} s(n, k)
\]

in [1, p. 135], we acquire

\[
P^{(r)}(t) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1} (k-1)!}{(1 + u)^k} B_{n,k}(0!, 1!, \ldots, (n-k)!) = \lambda^n \sum_{k=1}^{\infty} \frac{(-1)^{k-1} (k-1)!}{(1 + \lambda t)^k} s(n, k).
\]

The formula (6) is thus proved. The inversion theorem [31, p. 171, Theorem 12.1] reads that

\[
a_n = \sum_{\alpha=0}^{\infty} S(n, \alpha)b_\alpha \quad \text{if and only if} \quad b_n = \sum_{k=0}^{\infty} s(n, k)a_k.
\]

Combining (9) with (6) arrives at

\[
(-1)^{n-k} s(n, k) = \sum_{k=1}^{\infty} S(n, k) \frac{(1 + \lambda t)^k}{(1 + \lambda t)^n} P^{(r)}(t)
\]

which can be rewritten as (7). The proof of Theorem 1 is complete.

3. Remarks

Finally, we list several remarks on our main results and closely related things.

Remark 1. Comparing (1) and (2) with (7) and (6) reveals that

\[
a_\alpha(n) = S(n, \alpha)\]

and

\[
H_{n-1,k-1} = (-1)^{n-k} \frac{s(n, k)}{(n-1)!}
\]

for \(n \geq k \geq 1 \). These two expressions are simpler, more meaningful, and more significant than the forms in (4) and (5). The expression (10) was also found in [18, 20].

Remark 2. We note that [3, Theorem 2.1] has also been discussed in [27, Theorem 2].

Remark 3. The motivations in the papers [4, 5, 6, 7, 9, 10, 12, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32] are same as the one in this paper.

Remark 4. This paper is a slightly modified version of the preprint [8].

References

[7] F. Qi, Notes on several families of differential equations related to the generating function for the Bernoulli numbers of the second kind, ResearchGate Preprint (2017), available online at https://doi.org/10.13140/RG.2.2.13591.23683

[12] F. Qi, Simplifying coefficients in a family of ordinary differential equations related to the generating function of the Catalan numbers and the Chebyshev polynomials of the second kind, ResearchGate Preprint (2017), available online at https://doi.org/10.13140/RG.2.2.20944/preprints201611.0145.v1

[14] F. Qi, The inverse of a matrix and several identities related to the Catalan numbers and the Chebyshev polynomials of the second kind, ResearchGate Presentation (2017), available online at https://doi.org/10.13140/RG.2.2.22832.46081/1 (Chinese)

[18] F. Qi and B.-N. Guo, Viewing some ordinary differential equations as the angle of derivative polynomials, Preprints 2016, 2016100043, 12 pages; Available online at https://doi.org/10.20944/preprints201610.0043.v1

[20] F. Qi, D. Lim, and B.-N. Guo, Some identities relating to Eulerian polynomials and involving Stirling numbers, Preprints 2017, 2017080004, 10 pages; Available online at https://doi.org/10.20944/preprints201708.0004.v1

[21] F. Qi, D. Lim, and A.-Q. Li, Explicit expressions related to degenerate Cauchy numbers and their generating function, HAL archives (2018), available online at https://hal.archives-ouvertes.fr/hal-01725045

[22] F. Qi, D.-W. Niu, and B.-N. Guo, Simplification of coefficients in differential equations associated with higher order Frobenius–Euler numbers, Preprints 2017, 2017080017, 7 pages; Available online at https://doi.org/10.20944/preprints201708.0017.v1
F. Qi, D.-W. Niu, and B.-N. Guo, Simplifying coefficients in differential equations associated with higher order Bernoulli numbers of the second kind, Preprints 2017, 2017080026, 6 pages; Available online at https://doi.org/10.20944/preprints201708.0026.v1.

F. Qi, Q. Zou, and B.-N. Guo, Some identities and a matrix inverse related to the Chebyshev polynomials of the second kind and the Catalan numbers, Preprints 2017, 2017030209, 25 pages; Available online at https://doi.org/10.20944/preprints201703.0209.v2.
