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Abstract

It is proved that a class of convolution integral equations of the Volterra type has a global solution, that is, solutions defined for all t ≥ 0.
Smoothness of the solution is studied.
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1. Introduction

Consider the equation:

u(t) =
∫ t

0

(t − s)a

Γ(a+1)
u(s)ds+ f (t) :=Vu+ f , (1)

where

t ≥ 0; a = const 6=−1,−2, ....., (2)

and

Vu :=Va ∗u, Va :=
ta
+

Γ(a+1)
. (3)

Here Γ(z) is the Gamma function, and (3) is a convolution with the
distribution Va, see [1]. Thus, equation (1) is a Volterra equation
with kernel that is not absolutely integrable for a <−1. There is a
large literature on integral equations, [2], but the usual methods to
study such equations are based on the assumption that the kernel of
the operator V belongs to Lp with p ≥ 1.
The goal of this paper is to develop a method to study (1) with a
distributional kernel ta

+

Γ(a+1) . The basic known result (see [1]) is the
property of convolution

Va ∗Vb =Vb ∗Va =Va+b. (4)

Our result is formulated in Theorem 1.
Theorem 1. Equation (1) with a < −1 is uniquely solvable. Its
solution u exists for all t ≥ 0. It belongs to the space of functions
which is of the same smoothness as V−a f .
In the next section a proof is given.

2. Proof

Proof of Theorem 1. The idea of the proof is to apply V−a to equation
(1) and use the formula

Va ∗V−a = I, (5)

where I is the identity operator whose kernel is the delta-function.
Applying V−a to (1) one gets

V−au = u+V−a f , (6)

or

u =−V−au+V−a f . (7)

Suppose that a <−1. Then −a > 1 and the operator V−a is a convo-
lution with a continuous kernel. Therefore equation (7) is a Volterra
integral equation with a continuous kernel. Consequently, this equa-
tion has a unique solution u for all t ≥ 0. This solution can be
calculated by iterations. Equations (1) and (7) are equivalent be-
cause Va ∗V−a = I. Therefore, Theorem 1 is proved. 2
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