Global Journal of Mathematical Analysis, 5 (2) (2017) 43-43
Global Journal of Mathematical Analysis

Website: www.sciencepubco.com/index.php/GJMA doi: 10.14419/gjma.v5i2.7975

Completeness of the set $\left.\left\{e^{i k \beta \cdot s}\right\}\right|_{\forall \beta \in S^{2}}$

Alexander G. Ramm ${ }^{1 *}$
${ }^{1}$ Department of Mathematics, Kansas State University, , Manhattan, KS 66506, USA
*Corresponding author E-mail: ramm@math.ksu.edu

Abstract

Let S^{2} be the unit sphere in $\mathbb{R}^{3}, k>0$ be a fixed constant, $s \in S$, and S is a smooth, closed, connected surface, the boundary of a bounded domain D in \mathbb{R}^{3}. It is proved that the set $\left.\left\{e^{i k \beta \cdot s}\right\}\right|_{\forall \beta \in S^{2}}$ is total in $L^{2}(S)$ if and only if k^{2} is not a Dirichlet eigenvalue of the Laplacian in D.

Keywords: completeness; scattering theory.

1. Introduction

Let $D \subset \mathbb{R}^{3}$ be a bounded domain with a connected closed C^{2}-smooth boundary $S, D^{\prime}:=\mathbb{R}^{3} \backslash D$ be the unbounded exterior domain and S^{2} be the unit sphere in $\mathbb{R}^{3}, \beta \in S^{2}, s \in S$.
We are interested in the following problem:
Is the set $\left.\left\{e^{i k \beta \cdot s}\right\}\right|_{\forall \beta \in S^{2}}$ total in $L^{2}(S)$?
A set $\{\phi(s, \beta)\}$ is total (complete) in $L^{2}(S)$ if the relation $\int_{S} f(s) \phi(s, \beta) d s=0$ for all $\beta \in S^{2}$ implies $f=0$, where $f \in L^{2}(S)$ is an arbitrary fixed function.
The above question is of interest by itself, but also it is of interest in scattering problems and in inverse problems, see [1]-[5].
Our result is:
Theorem 1. The set $\left.\left\{e^{i k \beta \cdot s}\right\}\right|_{\forall \beta \in S^{2}}$ is total in $L^{2}(S)$ if and only if k^{2} is not a Dirichlet eigenvalue of the Laplacian in D.

2. Proof of Theorem 1

Necessity. Let $f \in L^{2}(S)$ and
$\int_{S} f(s) e^{i k \beta \cdot s} d s=0 \quad \forall \beta \in S^{2}$,
and there is a $u \not \equiv 0$ such that
$\left(\nabla^{2}+k^{2}\right) u=0 \quad$ in $\quad D,\left.\quad u\right|_{S}=0$.
Choose $f=u_{N}$, where N is the unit normal to S pointing out of D. Then, by Green's formula, equation (1) holds and $f \not \equiv 0$ by the uniqueness of the solution to the Cauchy problem for elliptic equation (2). Necessity is proved.
Sufficiency. Assume that $f \in L^{2}(S)$ is and arbitrary fixed function, $f \not \equiv 0$, and (1) holds. Let $h \in L^{2}\left(S^{2}\right)$ be arbitrary and
$w(x):=\int_{S^{2}} h(\beta) e^{i k \beta \cdot x} d \beta$.
Then
$\left(\nabla^{2}+k^{2}\right) w=0 \quad$ in \mathbb{R}^{3}.

If (1) holds, then
$\int_{S} f(s) w(s) d s=0$
for all w of the form (3). Let us now apply the following Lemma:
Lemma 1. The set $\left\{\left.w\right|_{S}\right\}$ for all $h \in L^{2}\left(S^{2}\right)$ is the orthogonal complement in $L^{2}(S)$ to the linear span of the set $\left\{v_{N}\right\}$, where v solve equation (4) and $\left.v\right|_{S}=0$.
If k^{2} is not a Dirichlet eigenvalue of the Laplacian in D, then Lemma 1 implies that the set $\{w \mid S\}$ is total in $L^{2}(S)$, so (1) implies $f=0$. Sufficiency and Theorem 1 are proved.
Lemma 1 is similar to Theorem 6 in [3].
Proof of Lemma 1. Let $\left.w\right|_{S}:=\psi$. Choose an arbitrary $F \in C^{2}(D)$ such that $\left.F\right|_{S}=\psi$. Define $G:=F-w$ in D. Then
$\left(\nabla^{2}+k^{2}\right) G=\left(\nabla^{2}+k^{2}\right) F \quad$ in $\quad D ;\left.\quad G\right|_{S}=0$.
For (6) to hold it is necessary and sufficient that
$0=\int_{D}\left(\nabla^{2}+k^{2}\right) F v d x$,
where v is an arbitrary function in the set of solutions of equation (2). Using Green's formula one reduces condition (7) to the following condition:
$\int_{S} \psi v_{N} d s=0$.
Therefore the set $\{\psi\}$ is the orthogonal complement in $L^{2}(S)$ of the linear span of the functions $\left\{v_{N}\right\}$. Lemma 1 is proved.

References

[1] A.G.Ramm, Scattering by obstacles, D.Reidel, Dordrecht, 1986.
[2] A.G.Ramm, Inverse problems, Springer, New York, 2005.
[3] A.G.Ramm, Solution to the Pompeiu problem and the related symmetry problem,
Appl. Math. Lett., 63, (2017), 28-33.
[4] A.G.Ramm, Perturbation of zero surfaces, Global Journ. of Math. Analysis, 5, (1), (2017), 27-28.
[5] A.G.Ramm, Uniqueness of the solution to inverse obstacle scattering with non-over-determined data, Appl. Math. Lett., 58, (2016), 81-86.

