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Abstract

Let S2 be the unit sphere in R3, k > 0 be a fixed constant, s ∈ S, and S is a smooth, closed, connected surface, the boundary of a bounded
domain D in R3. It is proved that the set {eikβ ·s}|∀β∈S2 is total in L2(S) if and only if k2 is not a Dirichlet eigenvalue of the Laplacian in D.
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1. Introduction

Let D ⊂ R3 be a bounded domain with a connected closed
C2−smooth boundary S, D′ := R3 \D be the unbounded exterior
domain and S2 be the unit sphere in R3, β ∈ S2, s ∈ S.
We are interested in the following problem:
Is the set {eikβ ·s}|∀β∈S2 total in L2(S)?
A set {φ(s,β )} is total (complete) in L2(S) if the relation∫

S f (s)φ(s,β )ds = 0 for all β ∈ S2 implies f = 0, where f ∈ L2(S)
is an arbitrary fixed function.
The above question is of interest by itself, but also it is of interest in
scattering problems and in inverse problems, see [1]–[5].
Our result is:
Theorem 1. The set {eikβ ·s}|∀β∈S2 is total in L2(S) if and only if k2

is not a Dirichlet eigenvalue of the Laplacian in D.

2. Proof of Theorem 1

Necessity. Let f ∈ L2(S) and∫
S

f (s)eikβ ·sds = 0 ∀β ∈ S2, (1)

and there is a u 6≡ 0 such that

(∇2 + k2)u = 0 in D, u|S = 0. (2)

Choose f = uN , where N is the unit normal to S pointing out of
D. Then, by Green’s formula, equation (1) holds and f 6≡ 0 by
the uniqueness of the solution to the Cauchy problem for elliptic
equation (2). Necessity is proved.
Sufficiency. Assume that f ∈ L2(S) is and arbitrary fixed function,
f 6≡ 0, and (1) holds. Let h ∈ L2(S2) be arbitrary and

w(x) :=
∫

S2
h(β )eikβ ·xdβ . (3)

Then

(∇2 + k2)w = 0 in R3. (4)

If (1) holds, then∫
S

f (s)w(s)ds = 0 (5)

for all w of the form (3). Let us now apply the following Lemma:
Lemma 1. The set {w|S} for all h ∈ L2(S2) is the orthogonal com-
plement in L2(S) to the linear span of the set {vN}, where v solve
equation (4) and v|S = 0.
If k2 is not a Dirichlet eigenvalue of the Laplacian in D, then Lemma
1 implies that the set {w|S} is total in L2(S), so (1) implies f = 0.
Sufficiency and Theorem 1 are proved. 2

Lemma 1 is similar to Theorem 6 in [3].
Proof of Lemma 1. Let w|S := ψ . Choose an arbitrary F ∈C2(D)
such that F |S = ψ . Define G := F−w in D. Then

(∇2 + k2)G = (∇2 + k2)F in D; G|S = 0. (6)

For (6) to hold it is necessary and sufficient that

0 =
∫

D
(∇2 + k2)Fvdx, (7)

where v is an arbitrary function in the set of solutions of equation (2).
Using Green’s formula one reduces condition (7) to the following
condition:∫

S
ψvNds = 0. (8)

Therefore the set {ψ} is the orthogonal complement in L2(S) of the
linear span of the functions {vN}. Lemma 1 is proved. 2
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