

Global Journal of Mathematical Analysis

Website: www.sciencepubco.com/index.php/GJMA doi: 10.14419/gjma.v5i2.7975 Short communication

Completeness of the set $\{e^{ik\beta \cdot s}\}|_{\forall \beta \in S^2}$

Alexander G. Ramm^{1*}

¹Department of Mathematics, Kansas State University, , Manhattan, KS 66506, USA *Corresponding author E-mail: ramm@math.ksu.edu

Abstract

Let S^2 be the unit sphere in \mathbb{R}^3 , k > 0 be a fixed constant, $s \in S$, and S is a smooth, closed, connected surface, the boundary of a bounded domain D in \mathbb{R}^3 . It is proved that the set $\{e^{ik\beta \cdot s}\}|_{\forall \beta \in S^2}$ is total in $L^2(S)$ if and only if k^2 is not a Dirichlet eigenvalue of the Laplacian in D.

Keywords: completeness; scattering theory.

1. Introduction

Let $D \subset \mathbb{R}^3$ be a bounded domain with a connected closed C^2 -smooth boundary S, $D' := \mathbb{R}^3 \setminus D$ be the unbounded exterior domain and S^2 be the unit sphere in \mathbb{R}^3 , $\beta \in S^2$, $s \in S$. We are interested in the following problem:

Is the set $\{e^{ik\beta \cdot s}\}|_{\forall \beta \in S^2}$ total in $L^2(S)$?

A set $\{\phi(s,\beta)\}$ is total (complete) in $L^2(S)$ if the relation $\int_S f(s)\phi(s,\beta)ds = 0$ for all $\beta \in S^2$ implies f = 0, where $f \in L^2(S)$ is an arbitrary fixed function.

The above question is of interest by itself, but also it is of interest in scattering problems and in inverse problems, see [1]–[5]. Our result is:

Theorem 1. The set $\{e^{ik\beta \cdot s}\}|_{\forall \beta \in S^2}$ is total in $L^2(S)$ if and only if k^2 is not a Dirichlet eigenvalue of the Laplacian in D.

2. Proof of Theorem 1

Necessity. Let $f \in L^2(S)$ and

$$\int_{S} f(s)e^{ik\beta \cdot s}ds = 0 \quad \forall \beta \in S^{2},$$
(1)

and there is a $u \neq 0$ such that

$$(\nabla^2 + k^2)u = 0$$
 in D , $u|_S = 0$. (2)

Choose $f = u_N$, where N is the unit normal to S pointing out of D. Then, by Green's formula, equation (1) holds and $f \neq 0$ by the uniqueness of the solution to the Cauchy problem for elliptic equation (2). Necessity is proved.

Sufficiency. Assume that $f \in L^2(S)$ is and arbitrary fixed function, $f \neq 0$, and (1) holds. Let $h \in L^2(S^2)$ be arbitrary and

$$w(x) := \int_{S^2} h(\beta) e^{ik\beta \cdot x} d\beta.$$
(3)

Then

$$(\nabla^2 + k^2)w = 0 \quad in \quad \mathbb{R}^3.$$

If (1) holds, then

$$\int_{S} f(s)w(s)ds = 0 \tag{5}$$

for all *w* of the form (3). Let us now apply the following Lemma: **Lemma 1.** The set $\{w|_S\}$ for all $h \in L^2(S^2)$ is the orthogonal complement in $L^2(S)$ to the linear span of the set $\{v_N\}$, where *v* solve equation (4) and $v|_S = 0$.

If k^2 is not a Dirichlet eigenvalue of the Laplacian in *D*, then Lemma 1 implies that the set $\{w|_S\}$ is total in $L^2(S)$, so (1) implies f = 0. Sufficiency and Theorem 1 are proved.

Lemma 1 is similar to Theorem 6 in [3].

Proof of Lemma 1. Let $w|_S := \psi$. Choose an arbitrary $F \in C^2(D)$ such that $F|_S = \psi$. Define G := F - w in *D*. Then

$$(\nabla^2 + k^2)G = (\nabla^2 + k^2)F$$
 in $D; \quad G|_S = 0.$ (6)

For (6) to hold it is necessary and sufficient that

$$0 = \int_D (\nabla^2 + k^2) F v dx, \tag{7}$$

where v is an arbitrary function in the set of solutions of equation (2). Using Green's formula one reduces condition (7) to the following condition:

$$\int_{S} \psi v_N ds = 0. \tag{8}$$

Therefore the set $\{\psi\}$ is the orthogonal complement in $L^2(S)$ of the linear span of the functions $\{v_N\}$. Lemma 1 is proved.

References

- [1] A.G.Ramm, Scattering by obstacles, D.Reidel, Dordrecht, 1986.
- [2] A.G.Ramm, *Inverse problems*, Springer, New York, 2005.
 [3] A.G.Ramm, Solution to the Pompeiu problem and the related statements.
- [3] A.G.Ramm, Solution to the Pompeiu problem and the related symmetry problem, Appl. Math. Lett., 63, (2017), 28-33.
- [4] A.G.Ramm, Perturbation of zero surfaces, *Global Journ. of Math. Analysis*, 5, (1), (2017), 27-28.
- [5] A.G.Ramm, Uniqueness of the solution to inverse obstacle scattering with non-over-determined data, Appl. Math. Lett., 58, (2016), 81-86.

Copyright © 2017 Alexander G. Ramm. This is an open access article distributed under the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.