Perturbation of zero surfaces

Alexander G. Ramm ${ }^{1 *}$
${ }^{1}$ Mathematics Department, Kansas State University, CW 207, Manhattan, KS 66506-2602, USA
*Corresponding author E-mail: ramm@math.ksu.edu

Abstract

It is proved that if a smooth function $u(x), x \in \mathbb{R}^{3}$, such that $\inf _{s \in S}\left|u_{N}(s)\right|>0$, where u_{N} is the normal derivative of u on S, has a closed smooth surface S of zeros, then the function $u(x)+\varepsilon v(x)$ has also a closed smooth surface S_{ε} of zeros. Here v is a smooth function and $\varepsilon>0$ is a sufficiently small number.

Keywords: zero surfaces; perturbation theory.

1. Introduction

Let $D \subset \mathbb{R}^{3}$ be a bounded domain containing inside a connected closed C^{3}-smooth surface S, which is the set of zeros of a function $u \in C^{3}(D)$, so that
$\left.u\right|_{S}=0$.
Let $N=N_{s}$ be the unit normal to S, such that $u_{N}=|\nabla u(s)|$, where u_{N} is the normal derivative of u on S. Let $u_{\varepsilon}:=u+\varepsilon v$, where $v \in C^{3}(D)$ and $\varepsilon>0$ is sufficiently small. Assume that

$$
\begin{equation*}
\inf _{s \in S}|\nabla u(s)| \geq 2 c_{1}>0, \quad c_{1}=\text { const }>0 . \tag{2}
\end{equation*}
$$

The purpose of this paper is to prove Theorem 1.
Theorem 1. Under the above assumptions there exists a smooth closed surface S_{ε} such that $u_{\varepsilon}=0$ on S_{ε}.
In Section 2 Theorem 1 is proved.
Although there are many various results on perturbation theory, see [2], [3], the result formulated in Theorem 1 is new.

2. Proof of Theorem 1

Consider the following equation for t :
$u(s+t N)+\varepsilon v(s+t N)=0$,
where $N=N(s)$ is the normal to S at the point s and t is a parameter.
Using the Taylor's formula and relation (1), one gets from (3)
$t(\nabla u(s) \cdot N+\varepsilon \nabla v(s) \cdot N)+\varepsilon v(s)+t^{2} \phi=0$,
where $t^{2} \phi$ is the Lagrange remainder in the Taylor's formula and
$\phi:=\sum_{i, j=1}^{3}\left[u_{x_{i} x_{j}}(s+\theta t N)+\varepsilon v_{x_{i} x_{j}}(s+\theta t N)\right] N_{i} N_{j}, \quad \theta \in(0,1)$.
Since the functions u and v belong to $C^{3}(D)$, the function $\phi=$ $\phi(t, s, \varepsilon)$ has a bounded derivative with respect to t uniformly with respect to $s \in S$ and $\varepsilon \in(0,1]$.

Consider equation (4) as an equation for $t=t(s)$ in the space $C(S)$. Rewrite (4) as

$$
\begin{align*}
t= & -\varepsilon(\nabla u(s) \cdot N+\varepsilon \nabla v(s) \cdot N)^{-1} v(s)- \\
& -t^{2} \phi(\nabla u(s) \cdot N+\varepsilon \nabla v(s) \cdot N)^{-1}:=B t \tag{6}
\end{align*}
$$

Let us check that the operator B satisfies the contraction mapping theorem in the set
$M:=\left\{t: \max _{s \in S}\left|t(s)-\varepsilon(\nabla u(s) \cdot N+\varepsilon \nabla v(s) \cdot N)^{-1} v(s)\right| \leq \delta\right\}$,
where $\delta>0$ is a small number, and $M \subset C(S)$.
First, one should check that B maps M into itself. One has

$$
\begin{align*}
\max _{s \in S}\left|B t(s)-\varepsilon(\nabla u(s) \cdot N+\varepsilon \nabla v(s) \cdot N)^{-1} v(s)\right| \leq \\
\leq \max _{s \in S} \frac{t^{2}|\phi|}{\nabla u(s) \cdot N+\varepsilon \nabla v(s) \cdot N} \tag{8}
\end{align*}
$$

We have chosen N so that $\nabla u(s) \cdot N=|\nabla u(s)|$. This is possible because equation (1) implies that $\nabla u(s)$ is orthogonal to S at the point $s \in S$. Assumption (2) implies that for sufficiently small ε one has

$$
\begin{equation*}
\inf _{s \in S}\left|\nabla u_{\varepsilon}(s)\right| \geq c_{1} \tag{9}
\end{equation*}
$$

Since ϕ is continuously differentiable, one has
$\sup _{s \in S, t \in(0,1)}|\phi(t, s, \varepsilon)| \leq c_{2}$.
Therefore, if
$|t(s)| \leq \delta$,
then

$$
\begin{equation*}
\frac{t^{2}(s)|\phi(t, s, \varepsilon)|}{|\nabla u(s)|+\varepsilon \nabla v(s) \cdot N} \leq \frac{c_{2}}{c_{1}} \delta^{2} \leq \delta \tag{12}
\end{equation*}
$$

provided that
$\frac{c_{2}}{c_{1}} \delta \leq 1$.
Thus, if (13) holds then B maps M into itself.
Let us check that B is a contraction mapping on M. One has
$\left|B t_{1}-B t_{2}\right| \leq c_{1}^{-1}\left|t_{1}^{2} \phi\left(t_{1}, s, \varepsilon\right)-t_{2}^{2} \phi\left(t_{2}, s, \varepsilon\right)\right| \leq c_{3}\left|t_{1}-t_{2}\right|$,
where $c_{3} \in(0,1)$ if δ is sufficiently small. Indeed,
$c_{3}=\max _{s \in S, t \leq \delta}\left(2 t|\phi(t, s, \varepsilon)|+t^{2}\left|\frac{\partial \phi}{\partial t}\right|\right) \leq c_{4} \delta<1$,
if δ is sufficiently small. Here c_{4} is a constant.
Thus, B is a contraction on M. By the contraction mapping principle, equation (6) is uniquely solvable for t. Its solution $t=t(s)$ allows one to construct the zero surface S_{ε} of the function u_{ε} by the equation $r=s+t(s) N$, where $r=r(s)$ is the radius vector of the points on S_{ε}. Theorem 1 is proved.
Remark 1. Condition (2) is a sufficient condition for the validity of Theorem 1. Although this condition is not necessary, if it does not hold one can construct counterexamples to the conclusion of Theorem 1. For example, assume that $u(x) \geq 0$ in \mathbb{R}^{3} and $u(x)=0$ on S, let $v>0$ in \mathbb{R}^{3} and $\varepsilon>0$. Then the function $u_{\varepsilon}=u+\varepsilon v$ does not have zeros in \mathbb{R}^{3}.
Remark 2. In scattering theory the following question is of interest: assume that $u(x)$ is an entire function of exponential type, $u(x)=\int_{S^{2}} e^{i k \beta \cdot x} f(\beta) d \beta$, where $f \in L^{2}\left(S^{2}\right), S^{2}$ is the unit sphere in \mathbb{R}^{3}. Assume that $u=0$ on S, where S is a bounded closed smooth connected surface in \mathbb{R}^{3}.
The question of interest is:
Is there a bounded closed smooth connected surface of zeros of an entire function u_{ε} of exponential type, $u_{\varepsilon}=\int_{S^{2}} e^{i k \beta \cdot x}[f(\beta)+$ $\varepsilon g(\beta)] d \beta$, where $g \in L^{2}\left(S^{2}\right)$ and $\varepsilon>0$ is a small parameter?
We will not use Theorem 1 since assumption (2) may not hold, but sketch an argument, based on the fact that S in the above question is the intersection of an analytic set with \mathbb{R}^{3}, see, for example, [1] for the definition and properties of analytic sets. The functions u and u_{ε} in Remark 2 solve the differential equation
$\nabla^{2} u+k^{2} u=0 \quad$ in $\mathbb{R}^{3}, \quad k^{2}=$ const >0.
The function u_{N} may vanish on S at most on the closed set $\sigma \subset S$ which is of the surface measure zero (by the uniqueness of the solution to the Cauchy problem for equation (16)). For every point $s \in S \backslash \sigma$ the argument given in the proof of Theorem 1 yields the existence of $t(s)$, the unique solution to (6). Since S is real analytic, the set \tilde{S}_{ε}, defined in the proof of Theorem 1, is analytic and \tilde{S}_{ε} is a part of the analytic set defined by the equation $u_{\varepsilon}=0$. In our problem S is a bounded closed real analytic surface. We guess that the set \tilde{S}_{ε} can be continued analytically to an analytic set which intersects the real space \mathbb{R}^{3} over a real analytic surface S_{ε}. It is still an open problem to prove (or disprove) that the analytic continuation of the set \tilde{S}_{ε} intersects \mathbb{R}^{3} over a bounded closed real analytic surface $S_{\varepsilon} \in \mathbb{R}^{3}$.

References

[1] B. Fuks, Theory of analytic functions of several complex variables, AMS, Providence RI, 1963.
[2] T. Kato, Perturbation theory for linear operators, Springer Verlag, New York, 1984.
[3] A. G. Ramm, Inverse problems, Springer, New York, 2005.

