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Abstract

In this study we define a new generalized k-Fibonacci sequence associated with its two cross two matrix called generating matrix. After use
the matrix representation we find many interesting properties such as nth power of the matrix, Cassini’s Identity of generalized k-Fibonacci
sequence as well as Binet’s formula for generalized k-Fibonacci sequence by the method of matrix diagonalization.
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1. Introduction

The Fibonacci numbers have many interestiong properties and appli-
cations to almost every fields of science and art. For their amazing
properties and applications one can consult [10, 17, 18, 19]. The
beauty of Fibonacci numbers is that they can be generalize. So these
numbers can be generalized by a number of ways and these general-
ized forms have many interesting properties just like usual Fibonacci
numbers. Many kinds of generalizations of these numbers have been
presented in [3, 6, 7, 15]. The two most important generalizations
of Fibonacci numbers are k-Fibonacci numbers {Fk,n} and k-Lucas
numbers {Lk,n} and these are defined as

Definition 1. For any integer k ≥ 1, the kth Fibonacci sequence, say
{Fk,n} is defined recurrently by:

Fn+1 = kFk,n +Fk,n−1 with n ≥ 0 Fk,0 = 0,Fk,1 = 1 (1.1)

Definition 2. For any integer k ≥ 1, the kth Lucas sequence, say
{Lk,n} is defined recurrently by:

Ln+1 = kLk,n +Lk,n−1 with n ≥ 0 Lk,0 = 2,Fk,1 = k (1.2)

The particular cases of definition (1.1) are

• If k = 1, we obtain the classical Fibonacci sequence
{0,1,1,2,3,5...}

• If k = 2, we obtain the Pell sequence {0,1,2,5,12,29...}

Many properties of k-Fibonacci numbers obtained directly by matrix
algebra in [16]. Authors presented many interesting properties of
k-Fibonacci numbers in [5, 12]. In [13] authors defined k-Fibonacci
numbers by using arithmetic indexes. Wloch in [4] discussed some
identities for the generalized Fibonacci numbers and the generalized
Lucas numbers. In [14] author discussed some theorems or identities

on the k-Lucas numbers.
Many properties of Fibonacci numbers as well as their generaliza-
tions have obtained in terms of matrices. In [8] authors studied the
generalized Fibonacci and Lucas numbers by matrix methods here
the authors considered two cross two matrices and after that obtained
nth power of the matrices such as

if U(p,q) =
[

p −q
1 0

]
and V (p,q) =

[
p2 −2q −pq

p −2q

]
then

Un(p,q) =
[

Un+1 −qUn

Un −qUn−1

]
and

V n(p,q) =


(

p2 −4q
) n

2

[
Un+1 −qUn
Un −qUn−1

]
i f n is even

(
p2 −4q

) n−1
2

[
Vn+1 −qVn
Vn −qVn−1

]
i f n is odd

where Un and Vn are nth generalized Fibonacci and Lucas numbers
respectively and the authors defined these sequences recurrently by

Un = pUn−1 −qUn−2, n ≥ 2, U0 = 0, U1 = 1 and

Vn = pVn−1 −qVn−2, n ≥ 2, V0 = 2, V1 = p

In [20] authors considered two cross two matrix for Un and Vn in a
different way and derived a number of results by using this matrix
which is defined below

A =

[
p2 −2q p
−q −2q

]
In [7] author derived a number general formulas for the generalized
Fibonacci sequence by matrix methods. Ahmet in [2] obtained some
identities of Pell, Pell-Lucas, and Modified Pell numbers by using
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some matrix methods. Here the authors defined some two cross two
matrices as

N =

[
3 1
1 1

]
,R =

[
6 2
2 2

]
and F =

[
2 2
2 −2

]
In [1] authors derived a number of properties of k-Fibonacci and
k-Lucas sequences with the help of two cross two generating matrix
for these sequences, such as they proved a Binet’s fomula for k-
Fibonacci sequence and k-Lucas sequence by using the concept of
diagonalization of generating matrix. So the generating matrix and
its nth powers are given as

F = L =

[
0 1
1 k

]
then Fn =

[
Fk,n−1 Fk,n+1

Fk,n Fk,n−1

]
and

Ln =


2Lk,n − kLk,n−1

k2 +4
Lk,n−1 +Lk,n+1

k2 +4
Lk,n−1 +Lk,n+1

k2 +4
Lk,n +Lk,n+2

k2 +4


In [11] author used the same concept as in [1] and studied the k-Pell-
Lucas sequences by matrix methods.

2. Generalized k-Fibonacci Sequence

In the present study we find the properties of generalized k-Fibonacci
sequence by matrix methods and the generalized k-Fibonacci is
defined by

Definition 3. For q,k ∈ N, the generalized k-Fibonacci sequence,
say Sk,n is defined recurrently by:

Sn = kSk,n−1 +Sk,n−2 with n ≥ 2 Sk,0 = q,Sk,1 = qk (2.1)

The k-Fibonacci sequence, k-Lucas sequence and generalized k-
Fibonacci sequence have the same characteristic equation x2−kx−1.
Let r and s the two roots of this equation. Some conspicuous points
about r and s are

r+ s = k, rs =−1, r− s =
√

k2 +4, r2 −1 = kr

s2 −1 = ks
(2.2)

where r = k+
√

k2+4
2 and s = k−

√
k2+4
2

In [14] the well-known general forms for the k-Fibonacci and k-
Lucas sequence are known as Binets formulae are given below

Fk,n =
rn − sn

r− s
, Lk,n = rn + sn (2.3)

and the Binet’s formula for the generalized k-Fibonacci sequence
(2.1) is given by

Sk,n = q
rn+1 − sn+1

r− s
(2.4)

Theorem 1. For k ∈ N, we have

qLk,n = Sk,n +Sk,n−2, n ≥ 2 (2.5)

q2L2
k,n − (k2 +4) S2

k,n−1 = 4q2(−1)n, n ≥ 1 (2.6)

Proof. It can be simply prove by the use of equations (2.2),(2.3) and
(2.4)

3. Generating Matrix for the Generalized k-
Fibonacci Sequence

One of the most and conventional methods for the study of the recur-
rences relations is generating matrix of the recurrence relations and
we are aware about that Fibonacci numbers and their generalizations
are the good examples of second order recurrence relations. But in
the ongoing paper we concern about the generalized k-Fibonacci
sequence, so generalized k-Fibonacci sequence is defined recursively
as a linear combination of the p terms

an+p = cp−1an+p−1 + cp−2an+p−2 + · · ·+ c1an+1 + c0an (3.1)

where c0,c1 · · ·cp−1 are real constants and for detailed illustration
about the generating matrix one can see [11]. If we put p = 2 in (3.1)
we get an+2 = c1an+1 + c0an and after that if we recall recurrence
(2.1) and take c0 = 1 and c1 = k then the matrix associated called
generating matrix is given by

S =

[
k 1
1 0

]
(3.2)

Clearly |Sn|= (−1)n. For the nth power of S we have the following
result

Theorem 2. For k ∈ N, we have

Sn = q−1
[

Sk,n Sk,n−1

Sk,n−1 Sk,n−2

]
, n ≥ 2 (3.3)

Proof. To prove the result we will use induction on n. Clearly (3.3)
is true for n = 2. Suppose (3.3) is true for n, we get

Sn+1 = SnS

= q−1
[

Sk,n Sk,n−1

Sk,n−1 Sk,n−2

][
k 1
1 0

]
= q−1

[
kSk,n +Sk,n−1 Sk,n

kSk,n−1 +Sk,n−2 Sk,n−1

]
= q−1

[
Sk,n+1 Sk,n

Sk,n Sk,n−1

]

Corollary 1. For k,n ∈ N, we have

Sn =

[
Fk,n+1 Fk,n

Fk,n Fk,n−1

]
(3.4)

Theorem 3. (Cassini’s Identity) For k,n ∈ N, we have

Sk,n+1Sk,n−1 −S2
k,n = q2(−1)n+1 (3.5)

Proof. 1
It can be simply proved by using the concept of determinats to
matrices S and Sn in equations (3.2) and (3.3).

Proof. 2
Here we can employ cramers rule in [9] for 2×2 linear systems of
equations to derive Cassini’s identity. Consider a 2×2 linear system

Sk,na+Sk,n−1b = Sk,n+1

Sk,n+1a+Sk,nb = Sk,n+2
(3.6)

Clearly S2
k,n −Sk,n+1Sk,n−1 6= 0 for n ≥ 1.

Let D = S2
k,n −Sk,n+1Sk,n−1 then by Cramer’s rule, we get

a =

∣∣∣∣ Sk,n+1 Sk,n−1

Sk,n+2 Sk,n+1

∣∣∣∣
D

and b =

∣∣∣∣ Sk,n Sk,n+1

Sk,n+1 Sk,n+2

∣∣∣∣
D
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By virtue of the recurrence relation (2.1), a = k and b = 1 is the
unique solution of the system given in (3.6). Therefore by Cramer’s
rule, we get

1 =

∣∣∣∣ Sk,n Sk,n+1

Sk,n+1 Sk,n+2

∣∣∣∣
D

⇒ Sk,n+2Sk,n −S2
k,n+1

= S2
k,n −Sk,n+1Sk,n−1

Let Pk,n = Sk,n+1Sk,n−1 −S2
k,n (3.7)

and Pk,n+1 = Sk,n+2Sk,n −S2
k,n+1

Clearly Pk,n+1 =−Pk,n with n ≥ 1,Pk,1 = q2 (3.8)

Now the equation (3.8) is a first order linear recurrence. Thus
PK,n = q2(−1)n+1 is the general solution of (3.8). Hence from the
equation (3.7), we get

Sk,n+1Sk,n−1 −S2
k,n = q2(−1)n+1

Theorem 4. For k,n ∈ N, we have[
Sk,n+1

Sk,n

]
= S

[
Sk,n

Sk,n−1

]
(3.9)

Proof. To prove the result we will use induction on n. (3.9) is true
for n = 1. Suppose (3.9) is true for n, we get[

Sk,n+2

Sk,n+1

]
=

[
kSk,n+1 +Sk,n

Sk,n+1

]
=

[
k 1
1 0

][
Sk,n+1

Sk,n

]
=

[
k 1
1 0

][
k 1
1 0

][
Sk,n

Sk,n−1

]
=

[
k 1
1 0

][
kSk,n +Sk,n−1

Sk,n

]
=

[
k 1
1 0

][
Sk,n+1

Sk,n

]
= S

[
Sk,n+1

Sk,n

]

Theorem 5. For k,n ∈ N, we have[
Sk,n+1

Sk,n

]
= Sn

[
Sk,1

Sk,0

]
(3.10)

Proof. It can be show simply by Principal of Mathematical Induction.

4. Binet’s Formula by Matrix Diagonalization
of Generating Matrix

In this section we will use the diagonalization of the generating
matrix to obtain the Binet’s fomula for the generalized k-Fibonacci
sequence defined in (2.1).

Theorem 6. (Binet’s Formula): For n ≥ 0 and k ∈ N, the nth term
of the generalized k-Fibonacci sequence is given by

Sk,n = q
rn+1 − sn+1

r− s
(4.1)

where r and s are the roots of the characteristic equation x2 − kx−
1 = 0

Proof. Since the generating matrix is given by S =

[
k 1
1 0

]
. Now

here we have motive to diagonalize the generating matrix S. Since
S is a square matrix. So let x be the eigen value of U then by the
Cayley Hamilton theorem on matrices, we have∣∣ U − xI

∣∣= 0∣∣∣∣ k− x x
1 −x

∣∣∣∣= 0

x2 − kx− x = 0 (4.2)

This is the characteristic equation of the generating matrix. Let
r = k+

√
k2+4
2 and s = k−

√
k2+4
2 are the roots of the characteristic

equation and also r and s be the two eigen values of a square matrix
S. Now we will try to find the eigen vectors corresponding to the
eigen values r and s. To find the eigen vectors we simply solve the
system of linear equations given by

(S− xI)V = 0

where V is the column vector of order 2×1. First of all we calculate
the eigen vector corresponding to the eigen value r then

(S− rI)V = 0[
k− r r

1 −r

][
V1

V2

]
= 0

(k− r)V1 + rV2 = 0 (4.3)

V1 − rV2 = 0 (4.4)

put V2 = t in (4.4) we get V1 = rt. Hence the eigen vectors cor-

responding to r are
[

rt
t

]
. In particular t = 1, the eigen vector

corresponding to r is
[

r
1

]
Similarly the eigen vector corressponding to s is

[
s
1

]
. Let A

be the matrix of eigen vectors, so P =

[
r s
1 1

]
then A−1 =

(r − s)−1
[

1 −s
−1 r

]
. Now we consider a diagonal matrix D

in which eigen values of S are on the main diagonal, D =

[
r 0
0 s

]
.

By the principal of diagonalization of matrices, we have

S = ADA−1

Sn = (ADA−1)n

= ADnA−1

= (r− s)−1
[

r s
1 1

][
rn 0
0 sn

][
1 −s
−1 r

]
= (r− s)−1

[
rn+1 sn+1

rn sn

][
1 −s
−1 r

]
= (r− s)−1

[
rn+1 − sn+1 −srn+1 + rsn+1

rn − sn −srn + rsn

]
Since from equation (2.2) rs = (−1), we have

Sn = (r− s)−1
[

rn+1 − sn+1 rn − sn

rn − sn rn−1 − sn−1

]

Since
[

Sk,n+1

Sk,n

]
= Sn

[
Sk,1

Sk,0

]
= Sn

[
qk
q

]
= qSn

[
k
1

]
then
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[
Sk,n+1
Sk,n

]
= q(r− s)−1

[
rn+1 − sn+1 rn − sn

rn − sn rn−1 − sn−1

][
k
1

]

= q(r− s)−1

[
krn+1 − ksn+1 + rn − sn

krn − ksn + rn−1 − sn−1

]

= q(r− s)−1

[
rn(kr+1)− sn(ks+1)

rn−1(kr+1)− sn−1(ks+1)

]
After using equation (2.2), we have[

Sk,n+1

Sk,n

]
=

q
r− s

[
rn+2 − sn+2

rn+1 − sn+1

]
Hence

Sk,n = q
rn+1 − sn+1

r− s
This is clearly the Binet’s formula for generalized k-Fibonacci se-
quence which is defined in equation (2.4)

Theorem 7. The generalized characteristic roots of Sn are

rn =
Lk,n +q−1

√
k2 +4 Sk,n−1

2
(4.5)

sn =
Lk,n −q−1

√
k2 +4 Sk,n−1

2
(4.6)

Proof. If we write the characteristic polynomial of Sn, we have

|Sn − yI| =


Sk,n−2

q
− y

Sk,n−1

q
Sk,n−1

q
Sk,n

q
− y


= q−2

[
Sk,n−2 −qy Sk,n−1

Sk,n−1 Sk,n −qy

]
= q−2 (Sk,n−2 −qy

)(
Sk,n −qy

)
−S2

k,n−1

= q−2
[
q2y2 −

(
Sk,n−2 +Sk,n

)
qy

+Sk,n−2Sk,n −S2
k,n−1

]
If we recall equations (2.5) and (3.5), we have

|Sn − yI| = q−2
[
q2y2 −Lk,nq2y+q2(−1)n

]
= y2 −Lk,ny+(−1)n

Thus the characteristic equation of Sn is

y2 −Lk,ny+(−1)n = 0

and the generalized characteristic roots are given by

y =
Lk,n ±

√
L2

k,n −4(−1)n

2
(4.7)

If we use equation (2.6) in equation (4.7), we get

y =
Lk,n ±q−1

√
k2 +4 Sk,n−1

2
(4.8)

Clearly the equation (4.8) has two roots and these are rn and sn. Now
accordingly we get the desired result as

rn =
Lk,n +q−1

√
k2 +4 Sk,n−1

2
and sn =

Lk,n −q−1
√

k2 +4 Sk,n−1

2

Since

Sn = q−1
[

Sk,n Sk,n−1

Sk,n−1 Sk,n−2

]

Sn

Sk,n−2
= q−1


Sk,n

Sk,n−2

Sk,n−1

Sk,n−2

Sk,n−1

Sk,n−2
1


Since the ratio of the two consecutive generalized k-Fibonacci num-
bers is equal to r that is

lim
n→∞

Sk,n−1

Sk,n−2
= r

and

lim
n→∞

Sk,n−1

Sk,n−2
= lim

n→∞

Sk,n

Sk,n−1

Sk,n−1

Sk,n−2
= r2

Therefore

lim
n→∞

Sn

Sk,n−2
= q−1

[
r2 r
r 1

]
If we consult equation (2.2), we have

lim
n→∞

Sn

Sk,n−2
= q−1

[
r2 r
r 1

]
= q−1

[
kr+1 r

r 1

]
If we compute the determinants of both sides, we get the characteris-
tic equation of the S matrix as below

q−1(kr+1− r2) = 0

r2 − kr−1 = 0

5. Conclusion

In the present study we obtained nth power of the matrix and some
properties have been obtained for the generalized k-Fibonacci se-
quence by matrix methods.
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