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Abstract

The current article mainly dwells on introducing Riesz sequence space rq(B̃pu) which generalized the prior studies of

Candan & Güneş [28], Candan & Kılınç [30] and consists of all sequences whose RquB̃-transforms are in the space `(p),

where B̃ = B(rn, sn) stands for double sequential band matrix (rn)∞n=0 and (sn)∞n=0 are given convergent sequences
of positive real numbers. Some topological properties of the new brand sequence space have been investigated as
well as α- β- and γ-duals. Additionally, we have also constructed the basis of rq(B̃pu). Eventually, we characterize a
matrix class on the sequence space. These results are more general and more comprehensive than the corresponding
results in the literature.
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1. Introduction

First of all, we are going to introduce some notations and definitions which are going to be needed in later sections
of the article. Let us begin by discussing the concept of a sequence. There are many ways of defining a sequence,
each of which is an equivalent way of defining the same thing. A sequence is simply an ordered list x1, x2, . . . , xn, . . .
of numbers. Such a sequence is called an infinite sequence. In this article sequences will be infinite thus so from now
on when we speak of sequences we will mean infinite sequences. A slightly more sophisticated way of representing
the sequence a1, a2, . . . , an, . . . is with the notation {ai}∞i=0. We will often abbreviate {ai}∞i=0 simply with {ai}. A
sequence {an} converges with limit a if each neighborhood of a contain almost all terms of the sequence. In this
case we say that {an} converges (or convergent) to a as n goes to ∞. In a common parlance the words series and
sequence are essentially synonomous, however, in mathematics the distinction between two is that a series is the
sum of the terms of a sequence. Let {an} be a sequence and define a new sequence {sn} by the recursion relation
{s1} = {a1} and {sn+1} = {sn} + {an+1}. The sequence {sn} is called the sequence of partial sums of {an}. Let
{sn} be sequence of partial sums of {an}. If {sn} converges we say that {an} is summable. In this case, we denote
the limk→∞ sn by

∑∞
j=0 aj . The expression

∑∞
j=0 aj is called an infinite series whether or not the sequence {an} is

summable. When we are given an infinite series
∑∞
j=0 aj the sequence {an} is called the sequence of terms. If the

sequence of terms is summable, the infinite series is said to be convergent. The set of all convergent sequences in K
are denoted by c. A sequence {an} in K is called a null sequence if it converges to zero. The set of all null sequences
in K are denoted by c0, where K denotes either of fields R and C. A sequence is bounded if the set of its terms
have an upper bound and a lower bound. The set of all bounded sequences is denoted by `∞. Any vector subspace
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of ω = ω(K) = KN is known as a sequence space and N := {0, 1, 2, . . .}. It is clear that the sets c, c0 and `∞ are the
subspaces of the ω. Therefore, c, c0 and `∞, equipped with a vector space structure, forms a sequence space. Also
by bs, cs, `1 and `p we denote the spaces of all bounded, convergent, absolutely and p-absolutely convergent series,
respectively.

Now, let us give the definition of the triangle matrix. Let T = (tnk) be a triangle matrix, that is tnk = 0 for
k > n and tnn 6= 0 for all n ∈ N. It is clear that A(Bx) = (AB)x holds for the triangle matrices A,B and a
sequence x. Moreover, a triangle matrix U uniquely has an inverse U−1 = V which is also a triangle matrix. Thus,
x = U(V x) = V (Ux) holds for all x ∈ ω.

The concept of matrix domain plays one of the most important role in this article. Therefore, its definition is
presented in this paragraph. The domain λA of an infinite matrix A in a sequence space λ is defined by

λA :=
{
x = (xk) ∈ ω : Ax ∈ λ

}
, (1)

which is a sequence space.
Even though generally the new sequence space λA produced by the limitation matrix A using a sequence space

λ is either the expansion or the contraction of the space λ itself, sometimes those spaces may be observed overlap.
In fact, it is easy see that the inclusion λS ⊂ λ strictly holds for λ ∈ {`∞, c, c0}. Because of this property, it can
be deduced that the inclusion λ ⊂ λ∆(1) also strictly holds for λ ∈ {`∞, c, c0, `p}. But, when λ := c0 ⊕ span{z} is
defined with z = ((−1)k), that is x ∈ λ iff x := s+αz for some s ∈ c0 and some α ∈ C, and take the matrix A with
the rows An described by An := (−1)ne(n) for all n ∈ N into consideration, we obtain Ae = z ∈ λ while Az = e /∈ λ
resulting in the sequences z ∈ λ \ λA and e ∈ λA \ λ, here e = (1, 1, 1, . . .) and e(n) represents a sequence of which
only non-zero element is a 1 on the nth place for each n ∈ N. In other words, the sequence spaces λA and λ overlap
while none of them contains the other one. For more detail on the domains of some triangle matrices in certain
sequence spaces, the reader may refer to Baar’s book entitled ”Summability Theory and Its Applications” (see [1,
p. 50]).

Another essential definition is the paranorm definition which is going to be needed in later. Now, let us give this
concept. The function g on a X satisfies the properties of a paranorm g(θ) = 0, g(x) = g(−x), g(x+y) = g(x)+g(y),
|αn − α| → 0 and g(xn − x) → 0 imply g(αnxn − αx) → 0 for all α ∈ R and all x ∈ X, where θ is the zero vector
in the linear space X. Recall that a linear topological space X over the real field R with a paranorm obeying these
rules is called a paranormed space.

From now on, let us assume that (pk) be a bounded sequence of strictly positive real numbers with sup pk = H
and M = max {1, H} and 1/pk + 1/p

′

k = 1 provided 1 < infpk ≤ H <∞. Then, the linear spaces `∞(p) and `(p)
were defined by Maddox in [2] and [3] (see also Simons [4] and Nakano [5]) as follows:

`(p) =

{
x = (xk) ∈ w :

∑
k

|xk|pk <∞

}

and

`∞(p) =

{
x = (xk) ∈ w : sup

k∈N
|xk|pk <∞

}
,

which are the complete spaces paranormed by

g1(x) =

(∑
k

|xk|pk
)1/M

and g2(x) = sup
k∈N
|xk|pk/M iff inf pk > 0

, respectively.
For the sake of simplicity, here and in what follows, it will be assumed that the summation without limits runs

from 0 to ∞.
Recently, the approach to construct a new sequence space by means of the matrix domain of a particular triangle

has been used by some of the writers in many research articles. They defined and examined the sequence spaces
Xp = (`p)C1

in [6], rt(p) = (`(p))Rt
in [7], erp = (`p)Er and er(p) = (`(p))Er in [8, 9, 10]. Z(u, v, `p) = (`p)G(u,v)

and `(u, v, p) = (`(p))G(u,v) in [11, 12], ar(p) = (`p)Ar and ar(u, p) = (`(p))Ar
u

in [13, 14], bvp = (`p)∆ and

bv(u, p) = (`(p))Au
in [15, 16, 17], `(p) = (`(p))S in [18], `λp = (`p)Λ in [19], λB(r,s) in [20] λB(r̃,s̃) in [21], f0(B) and

f(B) in [22], f0(B̃) and f(B̃) in [23] and etc., where C1 = {cnk}, Rt = {rtnk}, Er = {ernk}, S = {snk}, ∆ =

{δnk}, G(u, v) = {gnk}, ∆(m) = {∆(m)
nk }, Ar = {arnk}, Aru = {ank(r)}, Au = {aunk}, B(r, s) =
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{bnk(r, s)}, B(r̃, s̃) = {bnk(r̃, s̃)}, Λ = {λnk}∞n,k=0 and A(λ) = {ank(λ)} denote the Cesro, Riesz, Euler,
generalized weighted means or factorable matrix, summation matrix, difference matrix, generalized difference matrix
and sequential band matrix, respectively. Moreover, the ones who are more interested in the subject are advised to
read [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52].
We should note here, there are many different ways to construct new sequence spaces from old ones. To get more
detailed information, one can look at the articles [53, 54, 55, 56].

In this paragraph, we shall introduce the notion of a matrix transformation from X to Y . Let X, Y be any two
sequence spaces. Given any infinite matrix A = (ank) of real numbers ank, where n, k ∈ N, any sequence x, we
write Ax =

(
(Ax)n

)
, the A-transform of x, if (Ax)n =

∑
k ankxk converges for each n ∈ N. If x ∈ X implies that

Ax ∈ Y then we say that A defines a matrix mapping from X into Y and denote it by A : X → Y . By (X : Y ), we
mean the class of all infinite matrices such that A : X → Y .

In the present article, we introduce the new sequence spaces derived by Riesz mean (R, qn) and generalized

difference matrix B̃(r, s).
The layout of the rest of the present article is organized as follows:
Section 2 is devoted to the spaces of difference sequences and some historical developments related to this matter

are given. Additionally, the concept of generalized difference matrix is introduced. In section 3, the paranormed
sequence space rq(B̃pu) of non-absolute type which is the set of all sequences whose RquB̃-transforms are in the spaces

`(p) and then their alpha-, beta- and gamma-duals are computed. In addition to this, the basis of the space rq(B̃pu)
is obtained. In the final section of the article, we characterize a matrix class on the sequence space.

2. Difference sequence spaces

In this section, we are going to give some knowledge about literature concerning the spaces of difference sequence.
The difference sequence spaces have been studied by several authors in different ways. At first, Kızmaz introduced

the difference sequence space in 1981. Now, let us briefly explain further. If λ ∈ {`∞, c, c0} then, λ(∆) consisting of
the sequences x = (xk) such that (xk−xk+1) ∈ λ is called as the difference sequence spaces which were introduced by
Kızmaz [57]. In recent years, the difference spaces bvp consisting of the sequences x = (xk) such that (xk−xk−1) ∈ `p
have been studied in the case 0 < p < 1 by Altay and Başar [58], and in the case 1 ≤ p < ∞ by Başar and Altay
[59], and Çolak, Et and Malkowsky [60].

The concept of difference sequences was generalized by Çolak and Et [61]. They defined and examined the
sequence spaces

∆mλ =
{
x = (xk) ∈ ω : ∆mx ∈ λ

}
,

where ∆1x = (xk−xk+1) and ∆mx = ∆(∆m−1x) for m ∈ {1, 2, 3, . . .}. In [62], Malkowsky and Parashar introduced
the sequence spaces as follows

∆(m)λ =
{
x = (xk) ∈ ω : ∆(m)x ∈ λ

}
,

where m ∈ N, ∆(1)x = (xk−xk−1) and ∆(m)x = ∆(1)(∆(m−1)x). More recently, in [63], Polat and Başar introduced
the spaces er0(∆(m)), erc(∆

(m)) and er∞(∆(m)) consisting of all sequences whose mth order differences are in the Euler
spaces er0, erc and er∞, respectively. Finally, Altay [64] studied the space `p(∆

(m)) consisting of all sequences whose
mth order differences are p−absolutely summable which is a generalization of the spaces bvp defined by Başar and
Altay [59], and Çolak, Et and Malkowsky [60].

Let rn and sn be non–zero real numbers for all n ∈ N, and define the double sequential band matrix B̃ =
B(r̃, s̃) = {bnk(r̃, s̃)} by

bnk(r̃, s̃) :=

 rn , (k = n),
sn , (k = n− 1),
0 , (0 ≤ k < n− 1 or k > n),

for all k, n ∈ N. Let us note here that the matrix B(r̃, s̃) can be reduced to the generalized difference matrix B(r, s)
in the case rn = r, sn = s for all n ∈ N. Thus, the results related to the domain of the matrix B(r̃, s̃) are the
generalization of the corresponding consequences of the matrix domain of B(r, s).

Generalized difference matrix B(r, s) has been used by some of the writers in many research articles. Purely for
the development of this approach, the articles Kirişçi and Başar [20, 22] are recommended.
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3. The Riesz Sequence Space rq(B̃p
u) of Non-absolute Type

In this section, we will focus on the new paranormed sequence space rq(B̃pu), using the Riesz mean and double
sequential band matrix.

Before going into the details, we first introduce some notations and definitions. We begin by talking about the
Riesz mean.

The transformation given by

tn =
q0x0 + q1x1 + · · ·+ qnxn

Qn

is called the Riesz mean (T, qn) or simply the (T, qn) means of a sequence (xn), where (qk) is a sequence of positive
numbers and Qn = q0 + q1 + · · ·+ qn.

The matrix of the (T, qn) method is given by

tqnk :=

{ qk
Qn

, (0 ≤ k ≤ n),

0 , (k > n).

In order to avoid any confusion throughout the article the symbol (R, qn) will be used instead of Riesz mean

(T, qn). Now, we are ready to establish the set rq(B̃pu), using the Riesz mean and double sequential band matrix.

For 0 < pk ≤ H < ∞, let us define the set rq(B̃pu) as the set of all sequences whose RquB̃-transforms is in the
sequence space `(p), that is

rq(B̃pu) =

x = (xk) ∈ w :
∑
k

∣∣∣∣∣∣ 1

Qk

k∑
j=0

ujqjB̃xj

∣∣∣∣∣∣
pk

<∞

 ,

where u = (uk) is an arbitrary fixed sequence.

With the help of the notation of (1), we can rewrite the set rq(B̃pu) by

rq(B̃pu) = {`p}Rq
uB̃

where RquB̃ =
(
r
qu
B̃

nk

)
matrix defined as follows:

r
qu
B̃

nk =


1
Qn

(rkukqk + skuk+1qk+1) , 0 ≤ k ≤ n− 1,
rnqnun

Qn
, k = n,

0 , k > n.

Ahead of frequently used sequence y = (yk) by the RquB̃- transform of any given sequence x = (xk), i.e.,

yk =
1

Qk

k∑
j=0

ujqjB̃xj . (2)

From now on when we speak of the sequences x = (xk) and y = (yk), we will mean that they are connected
with the relation (2).

Now, it is time to give the following theorem.

Theorem 3.1 The set rq(B̃pu) is a linear space together with coordinatewise addition and scalar multiplication, in

other words, rq(B̃pu) represents the sequence space.

Proof: Since the proof of this theorem can be obtained by using elementary linear algebra, we omit the details.
Let us return to explaining our main subject. More recently, the Riesz sequence spaces rq(u, p) and rq(∆p

u) of
non-absolute type have been introduced and studied by Ganie and Sheikh [65, 66]. After then, some new Riesz
sequence spaces have been introduced and examined Candan & Güneş [28] and Candan & Kılınç [30]. When
compared to the corresponding results in the literature; it is seen that the results of the present study are more
general and more inclusive.

Now, let us start with one of the main results which is going to be used in later sections.
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Theorem 3.2 Let 0 < pk ≤ H <∞. Then, rq(B̃pu) is the complete linear metric space paronormed by g, described
via the following equality

gB̃(x) =

∑
k

∣∣∣∣∣∣ 1

Qk

k−1∑
j=0

(rjujqj + sjuj+1qj+1)xj +
rkukqk
Qk

xk

∣∣∣∣∣∣
pk

1
M

.

Proof: Clearly, in order to prove the theorem, it is sufficient to show that the conditions of the paranorm are
satisfied. To do this, firstly we show that the linearity of rq(B̃pu) with respect to the coordinate wise addition and

scalar multiplication is true. Let us assume that z, x ∈ rq(B̃pu). Therefore, the linearity of rq(B̃pu) is obtained from
the following rudimentary calculations

gB̃(x+ z) =

∑
k

∣∣∣∣∣∣ 1

Qk

k−1∑
j=0

(rjujqj + sjuj+1qj+1)(xj + zj) +
rkukqk
Qk

(xk + zk)

∣∣∣∣∣∣
pk

1
M

(3)

≤

∑
k

∣∣∣∣∣∣ 1

Qk

k−1∑
j=0

(rjujqj + sjuj+1qj+1)xj +
rkukqk
Qk

xk

∣∣∣∣∣∣
pk

1
M

+

∑
k

∣∣∣∣∣∣ 1

Qk

k−1∑
j=0

(rjujqj + sjuj+1qj+1)zj +
rkukqk
Qk

zk

∣∣∣∣∣∣
pk

1
M

= gB̃(x) + gB̃(z)

for any µ ∈ R (see [2, p. 30])

|µ|pk ≤ max{1, |µ|M}. (4)

It is fairly easy to get the next two conditions gB̃(θ) = 0 and gB̃(x) = gB̃(−x) which are valid for all x ∈ rq(B̃pu).
One more time, the inequalities (3) and (4) result in the subadditivity of g and the following inequality

gB̃(µx) ≤ max{1, |µ|M}gB̃(x)

obviously holds.
Now let us observe that the scalar multiplication is continuous. To do this, let us assume that (xn) be arbitrary

sequence of the points lying in rq(B̃pu) such that gB̃(xn−x)→ 0 and (µn) also be arbitrary sequence of scalars such
that µn → µ. We can get

gB̃(µnx
n − µx) =

∑
k

∣∣∣∣∣∣ 1

Qk

k−1∑
j=0

(rjujqj + sjuj+1qj+1)(µnx
n
j − µxj)

∣∣∣∣∣∣
pk

1
M

≤ |µn − µ|
1
M gB̃(xn) + |µ| 1

M gB̃(xn − x)

tending to be zero if we take n→∞ since
{
gB̃(xn)

}
is bounded due to the inequality

gB̃(xn) ≤ gB̃(x) + gB̃(xn − x)

which is valid because of subadditive of gB̃ . This shows that the scalar multiplication is continuous. Namely, from

now on, we say that gB̃ is paranorm on the space rq(B̃pu).

Here, if we prove the completeness of the space rq(B̃pu) then the proof ends. Let us suppose that {xi} be an

arbitrary Cauchy sequence in the space rq(B̃pu), where xi = {xi0, xi1, ...}. In that case, there exists a positive integer
n0(ε)

gB̃(xi − xj) <∞ (5)

for all i, j ≥ n0(ε) for a given ε > 0. We get by using definition of gB̃ , for each fixed k ∈ N

∣∣∣(RquB̃xi)k − (RquB̃x
j)k

∣∣∣ ≤ [∑
k

∣∣∣(RquB̃xi)k − (RquB̃x
j)k

∣∣∣pk] 1
M

<∞
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for i, j ≥ n0(ε). This result in the fact that
{

(RquB̃x
0)k, (R

q
uB̃x

1)k, ...
}

is a Cauchy sequence of real number for

every fixed k ∈ N. Since we already know that R is complete, it converge, say (RquB̃x
i)k → (RquB̃x)k as i → ∞.

Using these infinitely many limits (RquB̃x)0, (R
q
uB̃x)1, ... we describe the sequence

{
(RquB̃x)0, (R

q
uB̃x)1, ...

}
. From

(5) for each m ∈ N and i, j ≥ n0(ε), we have

m∑
k=0

∣∣∣(RquB̃xi)k − (RquB̃x
j)k

∣∣∣pk ≤ gB̃(xi − xj)M < εM . (6)

Let us pass to limit first as j →∞ and next as m→∞ in (6), then we obtain

gB̃(xi − x) ≤ ∞.

Finally, if we take ε = 1 in (6) and i ≥ n0(1), then using Minkowsky’s inequality for each m ∈ N, we have[
m∑
k=0

∣∣∣(RquB̃x)k

∣∣∣pk] 1
M

≤ gB̃(xi − x) + gB̃(xi) ≤ 1 + gB̃(xi).

This imply that x ∈ rq(B̃pu). Because of the fact that gB̃(xi − x) ≤ ∞ for all i ≥ n0(ε), it is reached the end of

that xi → x as i→∞, thus we show that rq(B̃pu) is complete and proof of the theorem is completed.

Note that, it can easily be seen that the absolute property is invalid on the space rq(B̃pu), that is gB̃(x) 6= gB̃(| x |)
for at least one sequence in the space rq(B̃pu) and this says us that rq(B̃pu) is a sequence space of non-absolute type.

Theorem 3.3 Let 0 < pk ≤ H <∞. Then the sequence space rq(B̃pu) is linearly isomorphic to the space `(p).

Proof: The first step in proving the theorem is to show the existence of a linear bijection between the spaces
rq(B̃pu) and `(p), where 0 < pk ≤ H <∞. For this, we use the notation of (3), consider the transformation T that

defined from rq(B̃pu) to `(p) by x → y = Tx. Indeed, the linearity of T is fairly easy. Also it is clear that x = θ
whenever Tx = θ. Hence T is injective.

Let y ∈ `(p) and define the sequence x = (xk) as follows:

xk =

k−1∑
n=0

k∏
j=n+1

(
−sj
rj+1

)(
1

rnunqn
+

1

snun+1qn+1

)
Qnyn +

Qk
rkukqk

yk

for k ∈ N. We eventually obtain,

gB̃(x) =

∑
k

∣∣∣∣∣∣ 1

Qk

k−1∑
j=0

(rjujqj + sjuj+1qj+1)xj +
rkukqk
Qk

xk

∣∣∣∣∣∣
pk

1
M

=

∑
k

∣∣∣∣∣∣
k∑
j=0

δkjyj

∣∣∣∣∣∣
pk

1
M

=

[∑
k

|yk|pk
] 1

M

= g1(y) <∞

where

δkj =

{
1 , k = j,
0 , k 6= j.

Consequently, we obtain that x ∈ rq(B̃pu) i.e., T is surjective and its paranorm is preserving. Hence T is a linear
bijection and the proof is completed.
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4. Basis and α−, β− and γ− duals of the space rq(B̃p
u)

In this section, after we define M(λ, µ) multiplier space of any sequence spaces λ and µ, we will research basis and

α−, β− and γ− duals of the space rq(B̃pu).
If λ, µ ⊂ w and z arbitrary sequence, we can write

z−1 ∗ λ = {x = (xk) ∈ w : xz = (xkzk) ∈ λ}

and

M(λ, µ) = ∩x∈λx−1 ∗ µ.

If we choose µ = `1, cs and bs, then we obtain the α−, β− and γ− duals of the space λ, respectively as

λα = M(λ, `1) = {a = (ak) ∈ w : ax = (akxk) ∈ `1 for all x ∈ λ},

λβ = M(λ, cs) = {a = (ak) ∈ w : ax = (akxk) ∈ cs for all x ∈ λ},

λγ = M(λ, bs) = {a = (ak) ∈ w : ax = (akxk) ∈ bs for all x ∈ λ}.

Let us now state the following lemmas. In this way, the fundamental results will be used in proofs of our
theorems.

Lemma 4.1 [67]

(i) Let 1 < pk ≤ H <∞. Then A ∈ (`(p) : `1) if and only if there exists an integer B > 1 such that

sup
K∈F

∑
k

∣∣∣∣∣∑
n∈K

ankB
−1

∣∣∣∣∣
p
′
k

<∞.

(ii) Let 0 < pk ≤ 1. Then A ∈ (`(p) : `1) if and only if

sup
K∈F

sup
k

∣∣∣∣∣∑
n∈K

ank

∣∣∣∣∣
pk

<∞.

Lemma 4.2 [68]
(i) Let 1 < pk ≤ H <∞. Then A ∈ (`(p) : `∞) if and only if there exists an integer B > 1 such that

sup
n

∑
k

∣∣ankB−1
∣∣p′k <∞. (7)

(ii) Let 0 < pk ≤ 1 for every k ∈ N. Then A ∈ (`(p) : `∞) if and only if

sup
n,k
|ank|pk <∞. (8)

Lemma 4.3 [68] A ∈ (`(p) : c) if and only if there exists an integer B > 1 provided that (7) and (8) hold,

lim
n
ank = βk for k ∈ N (9)

also holds. Where 0 < pk ≤ H <∞ for every given k ∈ N.

Theorem 4.4 Let 0 < pk ≤ 1 for all k ∈ N and the sets D1(u, p), D2(u, p) and D3(u, p) are defined by following
equations

D1(u, p) =
⋃
B>1

a = (ak) ∈ w : sup
K∈F

∑
k

∣∣∣∣∣∣
∑
n∈K

k−1∏
j=n

(
−sj
rj+1

)
AkanQk +

an
rnunqn

Qn

B−1

∣∣∣∣∣∣
p
′
k

<∞

 ,
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D2(u, p) =
⋃
B>1

a = (ak) ∈ w : sup
n

∑
k

∣∣∣∣∣∣
 ak

rkukqk
+Ak

n∑
i=k+1

ai

i∏
j=k+1

(
−sj−1

rj

)Qk

B−1

∣∣∣∣∣∣
p
′
k

<∞

 ,

where Ak = A(rk, sk, uk, qk) = 1
rkukqk

+ 1
skuk+1qk+1

, and

D3(u, p) =

a = (ak) ∈ w : limn→∞

n∑
i=k+1

ai

i∏
j=k+1

(
−sj−1

rj

)
exists

 .

In this case,[
rq(B̃pu)

]α
= D1(u, p),

[
rq(B̃pu)

]β
= D2(u, p) ∩D3(u, p),

[
rq(B̃pu)

]γ
= D2(u, p).

Proof: Firstly, let research that α− dual of space rq(B̃pu). Hence we will consider definition of α− dual. Let us
suppose that any a = (ak) ∈ w. Then we easily obtain by means of that

anxn =
n−1∑
k=0

n−1∏
j=k

(
−sj−1

rj

)(
1

rkukqk
+

1

skuk+1qk+1

)
anQkyk +

an
rnunqn

Qnyn (10)

= (Dy)n

where the matrix D = (dnk) is defined by

dnk =


∏k
j=n

(
−sj−1

rj

)(
1

rkukqk
+ 1

skuk+1qk+1

)
anQn , 0 ≤ k ≤ n− 1,

an
rnunqn

Qn , k = n,

0 , k > n,

for all n, k ∈ N. Thus we observe from (10) that ax = (anxn) ∈ `1 whenever x = (xn) ∈ rq(B̃pu) if and only if Dy ∈ `1
whenever y ∈ `(p). This means that D ∈ (`(p), `1). Thus we obtain from Lemma 4.1 (ii) that

[
rq(B̃pu)

]α
= D1(u, p).

Now, let us research that β− dual of space rq(B̃pu), using the definition of β− dual. We consider following
equation,

n∑
k=0

akxk =

n∑
k=0

 ak
rkukqk

+

(
1

rkukqk
+

1

skuk+1qk+1

) n∑
i=k+1

ai

i∏
j=k+1

(
−sj−1

rj

)Qk

 yk (11)

= (Ey)n

where, E = (enk) is defined as following

enk =

{ (
ak

rkukqk
+
(

1
rkukqk

+ 1
skuk+1qk+1

)∑n
i=k+1 ai

∏i
j=k+1

(
−sj−1

rj

))
Qk , 0 ≤ k ≤ n,

0 , k > n.

From (11), ax = (akxk) ∈ cs whenever x ∈ rq(B̃pu) if and only if Ey ∈ c whenever y ∈ `(p). In other words

E ∈ (`(p), c). We obtain
[
rq(B̃pu)

]β
= D2(u, p) ∩D3(u, p), using Lemma 4.3.

Finally, let find out that γ− dual of space rq(B̃pu), using the definition of γ− dual. Using (11) ax = (akxk) ∈ bs
whenever x ∈ rq(B̃pu) if and only if Ey ∈ `∞ whenever y ∈ `(p). In other words, a = (ak) ∈ [rq(B̃pu)]γ iff

E ∈ (`(p), `∞). Then from Lemma 4.2 (ii) obtain [rq(B̃pu)]γ = D2(u, p). Hence, the proof is completed.

Theorem 4.5 Let 1 < pk ≤ H < ∞ for every k ∈ N and define the sets D4(u, p) and D5(u, p) with the following
equations

D4(u, p) =

{
a = (ak) ∈ w : sup

K∈F
sup
k

∣∣∣∑n∈K

[∏k
j=n+1

(
−sj−1

rj

)(
1

rkukqk
+ 1

skuk+1qk+1

)
anQk + an

rnunqn
Qn

]∣∣∣pk <∞},
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D5(u, p) =

{
a = (ak) ∈ w : sup

k

∣∣∣∣∣∣
 ak

rkukqk
+

(
1

rkukqk
+

1

skuk+1qk+1

) n∑
i=k+1

ai

i∏
j=k+1

(
−sj−1

rj

)Qk

∣∣∣∣∣∣
pk

<∞
}
.

Then,[
rq(B̃pu)

]α
= D4(u, p),

[
rq(B̃pu)

]β
= D3(u, p) ∩D5(u, p),

[
rq(B̃pu)

]γ
= D5(u, p).

Proof: The proof of theorem is obtained alike the proof of Theorem 4.4.

Theorem 4.6 Let 0 < pk ≤ H < ∞ for all k ∈ N. Define the sequence b(k)(q) =
{
b
(k)
n (q)

}
of the elements of the

space rq(B̃pu) for every fixed k ∈ N by

b(k)
n (q) =


Qk

rkukqk
, n = k,∏n

j=k+1

(
−sj−1

rj

)(
1

rkukqk
+ 1

skuk+1qk+1

)
Qk , n > k,

0 , n < k.

Then, the sequence b(k)(q) is a basis for the space rq(B̃pu) and any x ∈ rq(B̃pu) has a unique representation of the
form

x =
∑
k

λk(q)bk(q) (12)

where, λk(q) = (RquB̃x)k for all k ∈ N.

Proof: Let 0 < pk ≤ H < ∞. Then it is not difficult to verify of the relation
{
b(k)(q)

}
⊂ rq(B̃pu). Really, for

k ∈ N

RquB̃b
(k)(q) = e(k) ∈ `(p) (13)

where e(k) is a sequence that 1 in kth term for each k ∈ N another term 0.
Moreover, let x ∈ rq(B̃pu). For all non-negative integer m, we put

x[m] =

m∑
k=0

λk(q)b(k)(q). (14)

In this case, we have that RquB̃ to (14) that for i,m ∈ N

RquB̃x
[m] =

m∑
k=0

λk(q)RquB̃b
(k)(q) =

m∑
k=0

(RquB̃x)ke
(k)

and hence(
RquB̃x− x[m]

)
i

=

{
0 , 0 ≤ i ≤ m,

(RquB̃x)i , i > m.

Also, for any given ε > 0, there exists an integer m0 such that for every m ≥ m0( ∞∑
i=m0

∣∣∣(RquB̃x)i

∣∣∣pk) 1
M

<
ε

2
.

Hence, we obtain for all m ≥ m0 that

gB̃(x− xm) =

( ∞∑
i=m

∣∣∣(RquB̃x)i

∣∣∣pk) 1
M

≤

( ∞∑
i=m0

∣∣∣(RquB̃x)i

∣∣∣pk) 1
M

<
ε

2
< ε.
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A little rewriting and the use of limit properties give limm→∞gB̃(x− xm) = 0 that is x is represented as (12).

Now, if we prove the uniqueness of the representation (12) of x ∈ rq(B̃pu) then the proof ends. For this, suppose
the contrary. That is, it have two representation like x =

∑
k µk(q)b(k) and x =

∑
k λk(q)b(k).

Since we know that the linear transformation from rq(B̃pu) to `(p) is continuous, we get

(RquB̃x)n =
∑
k

µk(q)
(
RquB̃b

(k)(q)
)
n

=
∑
k

µk(q)e(k)
n = µn(q)

for n ∈ N. We acknowledge that (RquB̃x)n = λn for all n ∈ N. Hence λn(q) = µn(q) and so unique of representation
(12) is obtained. This ends the proof of the last part of the theorem.

5. Matrix Mapping on the Space rq(B̃p
u)

One of the most important ideas is matrix transformation in this article. So, we focus on this concept in the present

section. Now, we emphasize the characterization of
(
rq(B̃pu), `∞

)
.

Theorem 5.1 (i) A ∈
(
rq(B̃pu), `∞

)
if and only if there exists an integer B > 0 such that

C(B) = sup
n

∑
k

∣∣∣∣∣∣
( ank

rkukqk

)
+

(
1

rkukqk
+

1

skuk+1qk+1

) n∑
i=k+1

ani

i∏
j=k+1

(
−sj−1

rj

)QkB−1

∣∣∣∣∣∣
p
′
k

<∞ (15)

and

{ank}k∈N ∈ cs (n ∈ N)

where 1 < pk ≤ H <∞ for every k ∈ N.

(ii) A ∈
(
rq(B̃pu), `∞

)
if and only if

sup
n,k

∣∣∣∣∣∣
( ank

rkukqk

)
+

(
1

rkukqk
+

1

skuk+1qk+1

) n∑
i=k+1

ani

i∏
j=k+1

(
−sj−1

rj

)Qk
∣∣∣∣∣∣
pk

<∞ (16)

and

{ank}k∈N ∈ cs (n ∈ N)

where 0 < pk ≤ 1 <∞ for every k ∈ N.

Proof: (i) Let 1 < pk ≤ H < ∞ for every k ∈ N and A ∈
(
rq(B̃pu), `∞

)
. Then Ax exists for x ∈

rq(B̃pu), {ank}k∈N ∈
[
rq(B̃pu)

]β
for each n ∈ N. Also consider the following equality obtained by using the

relation (10) that

m∑
k=0

ankxk =

m∑
k=0

 ank
rkukqk

+

(
1

rkukqk
+

1

skuk+1qk+1

) n∑
i=k+1

ani

i∏
j=k+1

(
−sj−1

rj

)Qk

 yk. (17)

From Lemma (4.1) and (17), we obtain (15) expression.

Conversely, supposed that is provided (15) expression and {ank}k∈N ∈ cs for each n ∈ N x ∈ rq(B̃pu). Since

{ank}k∈N ∈
[
rq(B̃pu)

]β
for every fixed n ∈ N, A-transform of x exists. We easily can derive from (17) as m → ∞

that

∞∑
k=0

ankxk =

∞∑
k=0

 ank
rkukqk

+

(
1

rkukqk
+

1

skuk+1qk+1

) ∞∑
i=k+1

aik

i∏
j=k+1

(
−sj−1

rj

)Qk

 yk. (18)
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Now, by combining (18) and inequality holding for an arbitrary Z > 0 and complex numbers a, b

|ab| ≤ Z
{
|aZ−1|p

′

+ |b|p
}

where p > 1 and 1/p+ 1/p
′

= 1. We can easily obtain

sup
n∈N

∣∣∣∣∣
∞∑
k=0

ankxk

∣∣∣∣∣ ≤ sup
n∈N

∞∑
k=0

∣∣∣∣∣∣
 ank

rkukqk
+

(
1

rkukqk
+

1

skuk+1qk+1

) ∞∑
i=k+1

aik

i∏
j=k+1

(
−sj−1

rj

)Qk

∣∣∣∣∣∣ |yk|
≤ Z[C(B) + gM1 (y)] <∞.

This mean that Ax ∈ `∞ whenever x ∈ rq(B̃pu). Hence, the proof is completed. (ii) The proof of (ii) be done alike
(i).

6. Note

Some results of this work were partially presented at the 4th International Eurasian Conference on Mathematical
Sciences and Applications (IECMSA 2015) to be held on 31 August-03 September 2015 in Athens, GREECE.

References
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[48] M. Başarır, E.E. Kara, On compact operators on the Riesz Bm−difference sequence space, Iran. J. Sci. Technol. Trans.
35A(4)(2011), 279–285.
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[59] F. Başar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J.
55(1)(2003), 136–147.
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