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Abstract

In this paper we define some new sequence spaces and give some topological properties of the sequence spaces
χ3 (∆m

v , s, p) and Λ3 (∆m
v , s, p) and investigate some inclusion relations.
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1. Introduction

Throughout w,χ and Λ denote the classes of all, gai and analytic scalar valued single sequences, respectively.
We write w3 for the set of all complex triple sequences (xmnk), where m,n, k ∈ N, the set of positive integers.Then,
w3 is a linear space under the coordinate wise addition and scalar multiplication.

Let (xmnk) be a triple sequence of real or complex numbers. Then the series
∑∞

m,n,k=1 xmnk is called a triple

series. The triple series
∑∞

m,n,k=1 xmnk is said to be convergent if and only if the triple sequence (Smnk) is convergent,
where

Smnk =

m,n,k∑
i,j,q=1

xijq(m,n, k = 1, 2, 3, ...).

A sequence x = (xmnk) is said to be triple analytic if

supm,n,k |xmnk|
1

m+n+k <∞.

The vector space of all triple analytic sequences are usually denoted by Λ3. A sequence x = (xmnk) is called
triple entire sequence if

|xmnk|
1

m+n+k → 0 as m,n, k → ∞.

The vector space of all triple entire sequences are usually denoted by Γ3. The space Λ3 and Γ3 is a metric space
with the metric

d(x, y) = supm,n,k

{
|xmnk − ymnk|

1
m+n+k : m,n, k : 1, 2, 3, ...

}
, (1)
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for allx = {xmnk}andy = {ymnk} in Γ3. Let ϕ = {finite sequences} .
Consider a triple sequence x = (xmnk). The (m,n, k)th section x[m,n,k] of the sequence is defined by x[m,n,k] =∑m,n,k
i,j,q=0xijqδijq for all m,n, k ∈ N,

δmnk =



0 0 ...0 0 ...
0 0 ...0 0 ...
. . .
.
.
0 0 ...1 0 ...
0 0 ...0 0 ...


with 1 in the (m,n, k)th position and zero otherwise.

A sequence x = (xmnk) is called triple gai sequence if ((m+ n+ k)! |xmnk|)
1

m+n+k → 0 as m,n, k → ∞. The
triple gai sequences will be denoted by χ3.

Consider a triple sequence x = (xmnk). The (m,n, k)th section x[m,n,k] of the sequence is defined by x[m,n,k] =∑m,n,k
i,j,q=0xijqℑijq for all m,n, k ∈ N ; where ℑijq denotes the triple sequence whose only non zero term is a 1

(i+j+k)!

in the (i, j, k)
th

place for each i, j, k ∈ N.
An FK-space(or a metric space)X is said to have AK property if (ℑmnk) is a Schauder basis forX, or equivalently

x[m,n,k] → x.
An FDK-space is a triple sequence space endowed with a complete metrizable; locally convex topology under

which the coordinate mappings are continuous.
If X is a sequence space, we give the following definitions:
(i) X

′
is continuous dual of X;

(ii) Xα =
{
a = (amnk) :

∑∞
m,n,k=1 |amnkxmnk| <∞, for each x ∈ X

}
;

(iii) Xβ =
{
a = (amnk) :

∑∞
m,n,k=1amnkxmnk is convergent, for each x ∈ X

}
;

(iv) Xγ =
{
a = (amn) : supm,n≥1

∣∣∣∑M,N,K
m,n,k=1 amnkxmnk

∣∣∣ <∞, for each x ∈ X
}
;

(v) LetX beanFK-space⊃ ϕ; thenXf =
{
f(ℑmnk) : f ∈ X

′
}
;

(vi) Xδ =
{
a = (amnk) : supm,n,k |amnkxmnk|1/m+n+k

<∞, for each x ∈ X
}
;

Xα.Xβ , Xγ are called α− (or Köthe-Toeplitz) dual of X,β − (or generalized-Köthe-Toeplitz)dual of X, γ−dual
ofX, δ−dual of X respectively.Xα is defined by Gupta and Kamptan [10] . It is clear that Xα ⊂ Xβ and Xα ⊂ Xγ ,
but Xα ⊂ Xγ does not hold.

2. Definitions and preliminaries

A sequence x = (xmnk) is said to be triple analytic if supmnk |xmnk|
1

m+n+k < ∞. The vector space of all
triple analytic sequences is usually denoted by Λ3. A sequence x = (xmnk) is called triple entire sequence if

|xmnk|
1

m+n+k → 0 as m,n, k → ∞. The vector space of triple entire sequences is usually denoted by Γ3. A sequence

x = (xmnk) is called triple gai sequence if ((m+ n+ k)! |xmnk| )
1

m+n+k → 0 as m,n, k → ∞. The vector space of
triple gai sequences is usually denoted by χ3. The space χ3 is a metric space with the metric

d(x, y) = supm,n,k

{
((m+ n+ k)! |xmnk − ymnk|)

1
m+n+k : m,n, k : 1, 2, 3, ...

}
(2)

for all x = {xmnk} and y = {ymnk}in χ3.
Throughout the article w3, χ3 (∆) ,Λ3 (∆) denote the spaces of all, triple gai difference sequence spaces and

triple analytic difference sequence spaces respectively.
For a triple sequence x ∈ w3, we define the sets

χ3 (∆) =
{
x ∈ w3 : ((m+ n+ k)! |∆xmnk|)1/m+n+k → 0asm, n, k → ∞

}
Λ3 (∆) =

{
x ∈ w3 : supm,n,k |∆xmnk|1/m+n+k

<∞
}
.
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The space Λ3 (∆) is a metric space with the metric

d (x, y) = supm,n,k

{
|∆xmnk −∆ymnk|1/m+n

: m,n, k = 1, 2, · · ·
}

for all x = (xmnk) and y = (ymnk) in Λ3 (∆) .
The space χ3 (∆) is a metric space with the metric

d (x, y) = supmnk

{
((m+ n+ k)! |∆xmnk −∆ymnk|)1/m+n+k

: m,n, k = 1, 2, · · ·
}

for all x = (xmnk) and y = (ymnk) in χ
3 (∆) .

Now we define the following sequence spaces: Let s ≥ 0 be real number and v = (vmnk) be non-zero real number
sequence, then

χ3 (∆m
v , s, p) =

{
x = (xmnk) ∈ w3 : (mnk)

−s
(
((m+ n+ k)! |∆m

v xmnk|)1/m+n+k
)pmnk

→ 0 (m,n, k → ∞) , s ≥ 0
}

Λ3 (∆m
v , s, p) =

{
x = (xmnk) ∈ w3 : supm,n,k (mnk)

−s
(
|∆m

v xmnk|1/m+n+k
)pmnk

<∞, s ≥ 0
}

where ∆0
vxmnk = (vmnkxmnk) ,∆vxmnk = vmnxmn−vmn+1xmn+1−vmn+2xmn+2−vm+1nxm+1n−vm+1n+1xm+1n+1−

vm+1n+2xm+1n+2 − vm+2nxm+2n − vm+2n+1xm+2n+1 − vm+2n+2xm+2n+2 ,
∆m

v xmn = ∆∆m−1
v xmn = ∆m−1

v xmn−∆m−1
v xmn+1−∆m−1

v xmn+2−∆m−1
v xm+1n−∆m−1

v xm+1n+1−∆m−1
v xm+1n+2−

∆m−1
v xm+2n −∆m−1

v xm+2n+1 −∆m−1
v xm+2n+2

We get the following sequence spaces from the above sequence spaces by choosing some special p,m, s and v.
If s = 0,m = 1 and

v =



1 1 ...1 1 0...
1 1 ...1 1 0...
.
.
.
1 1 ...1 1 0...
0 0 ...0 0 0...


with 1 upto (m,n, k)th position and zero otherwise and pmnk = 1 for all m,n, k. We have

χ3 (∆) =
{
x = (xmnk) : ∆x ∈ χ3

}
,

Λ3 (∆) =
{
x = (xmnk) : ∆x ∈ Λ3

}
.

If s = 0 and pmnk = 1 for all m,n, k we have the following sequence spaces

χ3 (∆m
v ) =

{
x = (xmnk) ∈ w3 : ∆m

v x ∈ χ3
}
,

Λ3 (∆m
v ) =

{
x = (xmnk) ∈ w3 : ∆m

v x ∈ Λ3
}
.

If s = 0,m = 0 and

v =



1 1 ...1 1 0...
1 1 ...1 1 0...
.
.
.
1 1 ...1 1 0...
0 0 ...0 0 0...


with 1 upto (m,n, k)th position and zero otherwise. We have the following sequence spaces

χ3 (p) =
{
x = (xmnk) ∈ w3 : ((m+ n+ k)! |xmnk|)pmnk/m+n+k → 0, (m,n, k → ∞)

}
Λ3 (p) =

{
x = (xmnk) ∈ w3 : supm,n,k |xmnk|pmnk/m+n+k

<∞
}
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If m = 0 and

v =



1 1 ...1 1 0...
1 1 ...1 1 0...
.
.
.
1 1 ...1 1 0...
0 0 ...0 0 0...


with 1 upto (m,n, k)th position and zero otherwise. We have the following sequence spaces

χ3 (p, s) =
{
x = (xmnk) ∈ w3 : (mnk)

−s
((m+ n+ k)! |xmnk|)pmnk/m+n+k → 0, (m,n, k → ∞) , s ≥ 0

}
,

Λ3 (p, s) =
{
x = (xmnk) ∈ w3 : supm,n,k (mnk)

−s |xmnk|pmnk/m+n+k
<∞, s ≥ 0

}
,

If s = 0,m = 0 and pmnk = 1

v =



1 1 ...1 1 0...
1 1 ...1 1 0...
.
.
.
1 1 ...1 1 0...
0 0 ...0 0 0...


for all m,n, k

with 1 upto (m,n, k)th position and zero otherwise. We have χ3 and Λ3.
If s = 0 we have χ3 (∆m

v , p) and Λ3 (∆m
v , p)

For a subspace ψ of a linear space is said to be sequence algebra if x, y ∈ ψ implies that x ·y = (xmnkymnk) ∈ ψ,
see Kamptan and Gupta [10].

A sequence E is said to be solid (or normal) if (λmnkxmnk) ∈ E, whenever (xmnk) ∈ E for all sequences of
scalars (λmnk = k) with |λmnk| ≤ 1.

If X is a linear space over the field C, then a paranorm on X is a function g : g (θ) = 0 where θ =
(0, 0, 0, · · · ) , g (−x) = g (x) , g (x+ y) ≤ g (x) + g (y) and |λ− λ0| → 0, g (x− x0) imply g (λx− λ0x0) → 0, where
λ, λ0 ∈ C and x, x0 ∈ X. A paranormed space is a linear space X with a paranorm g and is written (X, g) .

In this paper, we define some new sequence spaces and give some topological properties of the sequence spaces
χ3 (∆m

v , s, p) and Λ3 (∆m
v , s, p) and investigate some inclusion relations.

3. Main results

Theorem 3.1. The following statements are hold
(i)χ3 (∆m

v , s) ⊂ Λ3 (∆m
v , s) and the inclusion is strict.

(ii)X (∆m
v , s, p) ⊂ X

(
∆m+1

v , s, p
)
does not hold in general for any X = χ3 and Λ3.

Proof. (i) If we choose s = 0,

x =



1 0 ...1 0 0...
1 0 ...1 0 0...
.
.
.
1 0 ...1 0 0...
0 0 ...0 0 0...


and v =



1 1 ...1 1 0...
1 1 ...1 1 0...
.
.
.
1 1 ...1 1 0...
0 0 ...0 0 0...


Hence x ∈ Λ3 (∆m

v , s) , but x /∈ χ3 (∆m
v , s)
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(ii) Let v =



1 1 ...1 1 0...
1 1 ...1 1 0...
.
.
.
1 1 ...1 1 0...
0 0 ...0 0 0...


, p = (pmnk) and x = (xmnk) given by

pmnk = 1, ((m+ n+ k)! |xmnk|)1/m+n+k
= m2n2k2 if m,n, k is odd

pmnk = 2, ((m+ n+ k)! |xmnk|)1/m+n+k
= mnk if m,n, k if even

0 otherwise

Since for m,n, k ≥ 1,
(
(m+ n+ k)!

∣∣∆0
vxmnk

∣∣)pmnk/m+n+k
= ((m+ n+ k)! |xmnk|)pmnk/m+n+k

= m2n2k2

m−3n−3k−3
(
(m+ n+ k)!

∣∣∆0
vxmnk

∣∣)pmnk/m+n+k
= m−3n−3k−3m2n2k2 = m−1n−1k−1 → 0 (m,n, k → ∞) and

for j ≥ 1

((6j)! |∆vx2j,2j,2j |)p2j,2j,2j/6j =
(
6j3 + 6j2 + 1

)2
, (6j)

−3
((6j)! |∆vx2j,2j,2j |)p2j,2j,2j/6j ≥ 6j → ∞ (j → ∞) .

Now, we can see that x ∈ χ3
(
∆0

v, 3, p
)
and x /∈ Λ3

(
∆0

v, 3, p
)
, which imply that X (∆m

v , s, p) is not a subset of

X
(
∆m+1

v , s, p
)
. This completes the proof.

Theorem 3.2. χ3 (∆m
v , s, p) and Λ3 (∆m

v , s, p) are linear spaces over the complex field C.

Proof. Suppose that M = max (1, supm,n,k≥Npmnk) Since pmnk/M ≤ 1, we have for all m,n, k

|∆m
v (xmnk + ymnk)|pmnk/M ≤

(
|∆m

v xmnk|pmnk/M + |∆m
v ymnk|pmnk/M

)
(3)

and for all λ ∈ C

|λ|pmnk/M ≤Max (1, |λ|) (4)

Now the linearity follows from (3) and (4). This completes the proof.

Theorem 3.3. Let N1 = min
{
n0 : supm,n,k≥n0 (mnk)

−s
(
((m+ n+ k)! |∆m

v xmnk|)1/m+n+k
)pmnk

<∞
}
, N2 =

min {n0 : supm,n,k≥n0pmnk <∞} , N3 = min {n0 : supm,n,k≥n0 <∞} and N = max {N1, N2, N3} χ3 (∆m
v , s, p) is

a paranormed space with

g (x) =

i∑
m=1

j∑
n=1

r∑
k=1

(m+ n+ k)! |xmnk|+ limN→∞supm,n,k≥N (mnk)
−S/M

((m+ n+ k)! |∆m
v xmnk|)pmnk/M (5)

if and only if µ > 0, where µ = limN→∞infm,n,k≥Npmnk and M = max (1, supm,n,k≥Npmnk)

Proof. (i)Necessity: Let χ3 (∆m
v , s, p)be a paranormed space with (5) and suppose that µ = 0. Then α =

infm,n,k≥Npmnk = 0 for all N ∈ N and hence we obtain g (λx) =
∑i

m=1

∑j
n=1

∑r
k=1 (m+ n+ k)! |xmnk| +

limN→∞supm,n,k≥N (mnk)
−s |λ|pmnk/M = 1 for all λ ∈ (0, 1] , where x = α ∈ χ3 (∆m

v , s, p) . whence λ → 0
does not imply λx→ θ, when x is fixed. But this contradicts to (5) to be a paranorm.

Sufficiency: Let µ > 0. It is trivial that g (θ) = 0, g (−x) = g (x) and g (x+ y) ≤ g (x) + g (y) . Since µ > 0
there exists a positive number β such that pmnk > α, β for sufficiently large positive integer m,n, k. Hence for any

λ ∈ C, we may write |λ|pmnk ≤ max
(
|λ|M , |λ|α , |λ|β

)
for sufficiently large positive integers m,n, k ≥ N. Therefore,

we obtain that g (λx) ≤ max
(
|λ| , |λ|α/M , |λ|β/M

)
g (x) using this, one can prove that λx→ θ, whenever x is fixed

and λ→ 0, (or) λ→ 0 and x→ θ, or λ is fixed and x→ θ. This completes the proof.

Theorem 3.4. Let 0 < pmnk ≤ qmnk ≤ 1 for allm,n, k ∈ N, then (i)Λ3 (∆m
v , s, p) ⊆ Λ3 (∆m

v , s, q) (ii)χ
3 (∆m

v , s, p) ⊆
χ3 (∆m

v , s, q)
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Proof. (i): Let x ∈ Λ3 (∆m
v , s, p) . Then there exists a constant M > 1 such that

(mnk)
−s |∆m

v xmn|qmnk/m+n+k ≤M for all m,n, k

and so

(mnk)
−s |∆m

v xmnk|qmnk/m+n+k ≤M for all m,n, k

suppose that xi ∈ Λ3 (∆m
v , s, q) and x

i → x ∈ Λ3 (∆m
v , s, p) . Then for every o < ϵ < 1, there exist N such that for

all m,n, k

(mnk)
−s

∣∣∣∆m
v

(
x
(i)
mnk − xmnk

)∣∣∣pmnk/m+n+k

< ϵ for all i > N

Now,

(mnk)
−s

∣∣∣∆m
v

(
x
(i)
mnk − xmnk

)∣∣∣qmnk/m+n+k

< (mnk)
−s

∣∣∣∆m
v

(
x
(i)
mnk − xmnk

)∣∣∣pmnk/m+n+k

< ϵ (for all i > N)

Therefore x ∈ Λ3 (∆m
v , s, q) . This completes the proof.

(ii): It is easy. Therefore omit the proof.

Proposition 3.5. For X = χ3 and Λ3, then we obtain (i)X (∆m
v , s, p) is not sequence algebra, in general (ii)

X (∆m
v , s, p) is not solid, in general.

Proof. (i) This result is clear from the following example :

Example 3.6. (1) Let pmnk = 1, (m + n + k)!vmnk = 1
(mnk)2(m+n+k) , (m + n + k)!xmnk = (mnk)

2(m+n+k)
and

(m + n + k)!ymnk = (mnk)
2(m+n+k)

for all m,n, k. Then we have x, y ∈ χ3 (∆, 0, p) but x, y /∈ χ3 (∆, 0, p) with
m = 1 and s = 0.

Proof. (ii) This result is clear from the following example

Example 3.7. (2) Consider xmnk =



1 1 ...1 1 0...
1 1 ...1 1 0...
.
.
.
1 1 ...1 1 0...
0 0 ...0 0 0...


∈ χ3 (∆m

v , s, p) Let pmnk = 1, αmnk = (−1)
m+n+k

,

then αmnkxmnk /∈ χ3 (∆m
v , s, p) with m = 1 and s = 0.

The following proposition’s proof is a routine verification.

Proposition 3.8. For X = χ3 and Λ3, then we obtain
(i) s1 < s2 implies X (∆m

v , s1, p) ⊂ X (∆m
v , s2, p) ,

(ii) Let 0 < infpmnk < pmnk ≤ 1 then X (∆m
v , s, p) ⊂ X (∆m

v , s) ,
(iii) Let 1 ≤ pmnk ≤ supmnkpmnk <∞, then X (∆m

v , s) ⊂ X (∆m
v , s, p) ,

(iv) Let 0 < pmnk ≤ qmnk and
(

qmnk

pmnk

)
be bounded, then X (∆m

v , s, q) ⊂ X (∆m
v , s, p) .
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