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Abstract

In this paper we establish a coincidence and fixed point theorems for hybrid contraction under generalized weakly
contractive condition by using the concept of (IT)-commutativity in a complete metric space without appeal to
continuity of mappings. Our results extend and generalize the results of Choudhury et al. [6] and others.
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1. Introduction

Study of fixed point theorem for multi-valued mappings was initiated by Nadler [22]. Subsequently a number
of fixed point theorems in metric space have been proved for multi-valued mapping satisfying contractive type
conditions (see, for instance [8], [9], [18], [20], [32] and references therein). Later on the study of hybrid fixed point
theory for nonlinear single-valued and multi-valued mappings is a new development in the domain of contractive
type multi-valued theory( see, for instance [4], [5], [12], [17], [21], [24], [28], [29], [30], [31], [33], [34] and references
therein). On the other hand Alber and Guerre-Delabriere [3], defined weakly contractive mappings on a Hilbert
space and established a fixed point theorem for such a mappings. Subsequently Rhoades [26] use the notion of
weakly contractive mappings and obtained a fixed point theorem in complete metric space.
Afterward, weak contraction and function satisfying weak contractive type inequalities have been considered in a
large number of papers, (see, for instance [1], [2], [6], [7], [11], [25] and references therein).
In this paper we will establish a fixed point theorems under generalized weak contractive condition for a pair
of multi-valued and single-valued mappings by using the concept of (IT)-commutativity of mappings in complete
metric space without appeal to continuity of mappings. Our results extend and generalize the results of Choudhury
et al. [6] and others.

2. Preliminary notes

Let (X, d) be a metric space. Following [22], we define
CL(X) = {A : A is a non-empty closed subset of X}.
CB(X) = {A : A is a non-empty closed and bounded subset of X}.
C(X) = {A : A is a non-empty compact subset of X}.
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BN(X) = {A : A is a non-empty bounded subset of X}.
For non-empty subsets A and B of X, and x ∈ X,
D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.
H(A,B) = max[sup{D(a,B) : a ∈ A}, sup{D(A, b) : b ∈ B}].
d(x,A) = inf{d(x, a) : a ∈ A}.
δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B}.
Following Hadžić-Gajić [13] and Pant [23], Singh-Mishra [30] introduced the notion of R-weak commutativity of a
hybrid pair of single-valued and multi-valued mappings.

Definition 2.1. [30] : Let (X, d) be a metric space. The mappings f : X → X and T : X → CL(X) are
pointwise R-weakly commuting on X if given x ∈ X and fx ∈ X, there exists R > 0 such that

d(fy, Tfx) ≤ Rd(Tx, fx) for each y ∈ X ∩ Tx. (A)

Mappings f and T will be called R-weakly commuting on X if for each x ∈ X and (A) hold for some R > 0.
Following Jungck [15] and Jungck-Rhoades [16], we have the following definition.

Definition 2.2. The mappings f : X → X and T : X → CL(X) are weakly compatible if they commute at
their coincidence points, that is, Tfx = fTx whenever fx ∈ Tx.
Following Itoh-Takahashi [14] and Singh-Mishra [30], we have the following definition of (IT)-commutativity.

Definition 2.3. The mappings f : X → X and T : X → CL(X) are commuting at a point x ∈ X if fTx ⊂ Tfx.
f and T are commuting on X if they are commuting at each point x ∈ X.
The above commutativity is called Itoh-Takahashi commutativity or simply (IT)-commutativity (see, [30]).
The following example shows that (IT)-commutativity of f and T at a coincidence point is indeed more general
than their weak compatibility at the same point.

Example 2.4. [30] : Let X = [0,∞) with the usual metric d and fx = 4x, Tx = [3 + x,∞), x ∈ X. Then
f1 ∈ T1, fT1 ⊂ Tf1, and f, T are (IT)-commuting at x = 1. The inequality (A) is also satisfied for x = 1 and f, T
are R-weakly commuting at x = 1. Notice that f, T are not weakly compatible since fT1 6= Tf1.

Notation C(f, T ) will stand for the set of coincidence points of the mappings f and T , that is, C(f, T ) = {z :
fz ∈ Tz}.
Following Rhoades [26], we have the following definition.

Definition 2.5. [26] : A mapping f : X → X, where (X, d) is a metric space, is said to be weakly contractive
if for x, y ∈ X

d(fx, fy) ≤ d(x, y)− φ(d(x, y)),

where φ : [0,∞) → [0,∞) is a continuous and non-decreasing function such that φ(t) = 0 if and only if t = 0. If
one takes φ(t) = (1− k)t, where 0 < k < 1, a weak contraction reduces to a Banach contraction.

In (1976-77), Delbosco [10] and Skof [35] have established fixed point theorem for self mappings of complete
metric space by altering the distances between the points and subsequently, Khan et al. [19] generalized the notion
of altering distance between the point.

Definition 2.6. ([10] see also [35]): A function ψ : [0,∞)→ [0,∞) is called an altering distance function if the
following properties are satisfied:
I. ψ is monotone increasing and continuous,
II. ψ(t) = 0 if and only if t = 0.
Recently Choudhury et al. [6] defined generalized weak contraction and proved the following theorem.

Definition 2.7. [6] : Let (X, d) be a metric space, f a self mapping of X. We shall call f a generalized weakly
contractive mapping if for all x, y ∈ X

ψ(d(fx, fy)) ≤ ψ
(
max

{
d(x, y), d(x, fx), d(y, fy), 12 [d(x, fy) + d(y, fx)]

})
−φ(max{d(x, y), d(y, fy)}),
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where ψ is an altering distance function and φ : [0,∞)→ [0,∞) is a continuous function with φ(t) = 0 if and only
if t = 0.

Theorem 2.8. [6] : Let (X, d) be a complete metric space, and let f : X → X be such that

ψ(d(fx, fy)) ≤ ψ
(
max

{
d(x, y), d(x, fx), d(y, fy), 12 [d(x, fy) + d(y, fx)]

})
−φ(max{d(x, y), d(y, fy)}),

for some φ and ψ defined as in Definition 2.5 and 2.6. Then f has a unique fixed point.

3. Main results

Now we state our main result.

Theorem 3.1. Let (X, d) be a complete metric space. Let S, T : X → C(X) be two multi-valued mappings
and f : X → X be a self mapping such that for all x, y ∈ X

S(X) ∪ T (X) ⊂ f(X) (1)

f(X) is closed (2)

ψ(H(Sx, Ty)) ≤ ψ(M(x, y))− φ(m(x, y)), (3)

where

M(x, y) = max
{
d(fx, fy), D(fx, Sx), D(fy, Ty), 12 [D(fx, Ty) +D(fy, Sx)]

}
and

m(x, y) = max{d(fx, fy), D(fx, Sx), D(fy, Ty)},

where φ : [0,∞) → [0,∞) is a continuous function with φ(t) = 0 if and only if t = 0 and ψ : [0,∞) → [0,∞) is
an altering distance function. Then S, f and T, f have a coincidence point. Further S and f have a common fixed
point fu provided ffu = fu and S, f are (IT)-commuting at u ∈ C(S, f) and if T and f have a common fixed
point fu provided ffu = fu and T, f are (IT)-commuting at u ∈ C(T, f). Then S, T and f have a common fixed
point.

Proof. Let x0 be an arbitrary point in X. We shall construct sequences {xn} and {yn} as follows. Since
S(X) ∪ T (X) ⊂ f(X), we can choose points x1, x2 in X such that

y1 = fx1 ∈ Sx0
and

y2 = fx2 ∈ Tx1.

In view of the Remark of Nadler [22, page 480], we have the following

d(fx1, fx2) ≤ H(Sx0, Tx1).

So

ψ(d(y1, y2)) ≤ ψ(H(Sx0, Tx1)) ≤ ψ(M(x0, x1))− φ(m(x0, x1)). (4)

Similarly choose x3, x4 in X such that

y3 = fx3 ∈ Sx2

and

y4 = fx4 ∈ Tx3.



Global Journal of Mathematical Analysis 11

Again in view of the Remark of Nadler [22, page 480], we have the following

d(fx3, fx4) ≤ H(Sx2, Tx3).

So

ψ(d(y3, y4)) ≤ ψ(H(Sx2, Tx3)) ≤ ψ(M(x2, x3))− φ(m(x2, x3)). (5)

We continue this process to obtain a sequence {yn} in X such that

y2n+1 = fx2n+1 ∈ Sx2n

and

y2n+2 = fx2n+2 ∈ Tx2n+1, for all n = 0, 1, 2, 3... .

If there exists a positive integer 2n such that y2n+1 = y2n+2, then y2n+1 is a coincidence point of f and T . A similar
conclusion holds if y2n+2 = y2n+3, for some n, then f and S have a coincidence point. Therefore we may assume
that yn 6= yn+1, for all n ≥ 0. Then we have the following

ψ(d(y2n+1, y2n+2)) ≤ ψ(H(Sx2n, Tx2n+1)) ≤ ψ(M(x2n, x2n+1))− φ(m(x2n, x2n+1))

≤ ψ

(
max

{
d(fx2n, fx2n+1), D(fx2n, Sx2n), D(fx2n+1, Tx2n+1),

1
2 [D(fx2n, Tx2n+1) +D(fx2n+1, Sx2n)]

})
−φ

(
max

{
d(fx2n, fx2n+1), D(fx2n, Sx2n), D(fx2n+1, Tx2n+1)

})
≤ ψ

(
max

{
d(y2n, y2n+1), d(y2n, y2n+1), d(y2n+1, y2n+2),

1
2 [d(y2n, y2n+2) + d(y2n+1, y2n+1)]

})
−φ

(
max

{
d(y2n, y2n+1), D(fx2n, Sx2n), D(fx2n+1, Tx2n+1)

})
.

Since 1
2 [d(y2n, y2n+2)] ≤ max{d(y2n, y2n+1), d(y2n+1, y2n+2)}, it follows that

ψ(d(y2n+1, y2n+2)) ≤ ψ (max {d(y2n, y2n+1), d(y2n+1, y2n+2)})
−φ

(
max

{
d(y2n, y2n+1), D(fx2n, Sx2n), D(fx2n+1, Tx2n+1)

})
. (6)

Suppose that d(y2n, y2n+1) ≤ d(y2n+1, y2n+2) and d(y2n, y2n+1) ≤ D(fx2n, Sx2n), for some positive integer n.
Then from (6), we have

ψ(d(y2n+1, y2n+2)) ≤ ψ(d(y2n+1, y2n+2))− φ(D(fx2n, Sx2n)),

that is , φ(D(fx2n, Sx2n)) ≤ 0, which implies that D(fx2n, Sx2n) = 0, that is fx2n ∈ Sx2n or y2n ∈ Sx2n
contradicting the formation of the sequence. Therefore D(fx2n, Sx2n) < d(y2n, y2n+1), for all n ≥ 0. Again
suppose that d(y2n, y2n+1) ≤ d(y2n+1, y2n+2) and d(y2n, y2n+1) ≤ D(fx2n+1, Tx2n+1), for some positive integer n.
Then from (6), we have

ψ(d(y2n+1, y2n+2)) ≤ ψ(d(y2n+1, y2n+2))− φ(D(fx2n+1, Tx2n+1)),

that is, φ(D(fx2n+1, Tx2n+1)) ≤ 0, which implies that D(fx2n+1, Tx2n+1) = 0, that is fx2n+1 ∈ Tx2n+1 or
y2n+1 ∈ Tx2n+1 contradicting the formation of the sequence.
Therefore D(fx2n+1, Tx2n+1) < d(y2n, y2n+1), for all n ≥ 0.
Now

ψ(d(y2n+3, y2n+2)) ≤ ψ(H(Sx2n+2, Tx2n+1)) ≤ ψ(M(x2n+2, x2n+1))− φ(m(x2n+2, x2n+1))

≤ ψ

(
max

{
d(fx2n+2, fx2n+1), D(fx2n+2, Sx2n+2), D(fx2n+1, Tx2n+1),

1
2 [D(fx2n+2, Tx2n+1) +D(fx2n+1, Sx2n+2)]

})
−φ

(
max

{
d(fx2n+2, fx2n+1), D(fx2n+2, Sx2n+2), D(fx2n+1, Tx2n+1)

})
≤ ψ

(
max

{
d(y2n+2, y2n+1), d(y2n+2, y2n+3), d(y2n+1, y2n+2),

1
2 [d(y2n+2, y2n+2) + d(y2n+1, y2n+3)]

})
−φ

(
max

{
d(y2n+2, y2n+1), D(fx2n+2, Sx2n+2), D(fx2n+1, Tx2n+1)

})
.

Since 1
2 [d(y2n+1, y2n+3)] ≤ max{d(y2n+1, y2n+2), d(y2n+2, y2n+3)}, it follows that

ψ(d(y2n+2, y2n+3)) ≤ ψ (max {d(y2n+1, y2n+2), d(y2n+2, y2n+3)})
−φ

(
max

{
d(y2n+1, y2n+2), D(fx2n+2, Sx2n+2), D(fx2n+1, Tx2n+1)

})
. (7)



12 Global Journal of Mathematical Analysis

Suppose that d(y2n+1, y2n+2) ≤ d(y2n+2, y2n+3) and d(y2n+1, y2n+2) ≤ D(fx2n+2, Sx2n+2), for some positive integer
n.
Then from (7), we have

ψ(d(y2n+2, y2n+3)) ≤ ψ(d(y2n+2, y2n+3))− φ(D(fx2n+2, Sx2n+2)),

that is , φ(D(fx2n+2, Sx2n+2)) ≤ 0 which implies that D(fx2n+2, Sx2n+2) = 0, that is fx2n+2 ∈ Sx2n+2 or
y2n+2 ∈ Sx2n+2 contradicting the formation of the sequence. Therefore D(fx2n+2, Sx2n+2) < d(y2n+1, y2n+2), for
all n ≥ 0. Again suppose that d(y2n+1, y2n+2) ≤ d(y2n+2, y2n+3) and d(y2n+1, y2n+2) ≤ D(fx2n+1, Tx2n+1), for
some positive integer n. Then from (7), we have

ψ(d(y2n+2, y2n+3)) ≤ ψ(d(y2n+2, y2n+3))− φ(D(fx2n+1, Tx2n+1)),

that is, φ(D(fx2n+1, Tx2n+1)) ≤ 0, which implies that D(fx2n+1, Tx2n+1) = 0, that is fx2n+1 ∈ Tx2n+1 or
y2n+1 ∈ Tx2n+1 contradicting the formation of the sequence.
Therefore D(fx2n+1, Tx2n+1) < d(y2n+1, y2n+2), for all n ≥ 0.
Thus {d(yn, yn+1)} is a monotone decreasing sequence of non-negative real numbers.
Hence there exists an r ≥ 0 such that

limn→∞d(yn, yn+1) = r. (8)

In view of (6), for all n ≥ 0,

ψ(d(y2n+1, y2n+2)) ≤ ψ(d(y2n, y2n+1))− φ(d(y2n, y2n+1)).

Taking the limit as n→∞ in the above inequality and using the continuity of φ and ψ, we have

ψ(r) ≤ ψ(r)− φ(r),

which is a contradiction unless r = 0.
Hence we have

limn→∞d(yn, yn+1) = 0. (9)

Now we shall show that {yn} is a Cauchy sequence. It is sufficient to show that {y2n} is a Cauchy sequence. Suppose
that {y2n} is not a Cauchy sequence. Then there exists an ε > 0 such that for each integer 2(k) there exists an
even integer,

2m(k) > 2n(k) > 2(k)

such that

d(y2n(k), y2m(k)) ≥ ε, (10)

for every integer 2(k). Let 2m(k) be the least even integer exceeding 2n(k) satisfying (10), such that

d(y2n(k), y2m(k)−2) < ε.

Using the triangle inequality, we have

ε ≤ d(y2n(k), y2m(k)) ≤ d(y2n(k), y2m(k)−2) + d(y2m(k)−2, y2m(k)−1) + d(y2m(k)−1, y2m(k)),

that is,

ε ≤ d(y2n(k), y2m(k)) < ε+ d(y2m(k)−2, y2m(k)−1) + d(y2m(k)−1, y2m(k)).

Letting k →∞ in the above inequality and using (9), we have

limk→∞d(y2n(k), y2m(k)) = ε. (11)

Again

d(y2n(k), y2m(k)) ≤ d(y2n(k), y2n(k)+1) + d(y2n(k)+1, y2m(k)+1) + d(y2m(k)+1, y2m(k))

and

d(y2n(k)+1, y2m(k)+1) ≤ d(y2n(k)+1, y2n(k)) + d(y2n(k), y2m(k)) + d(y2m(k), y2m(k)+1).
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Letting k →∞ in the above inequality and using (9) and (11), we have

limk→∞d(y2n(k)+1, y2m(k)+1) = ε. (12)

Again

d(y2n(k), y2m(k)+2) ≤ d(y2n(k), y2n(k)+1) + d(y2n(k)+1, y2m(k)+1) + d(y2m(k)+1, y2m(k)+2).

Letting k →∞ in the above inequality and using (9) and (12), we have

limk→∞d(y2n(k), y2m(k)+2) = ε. (13)

Further

d(y2n(k), y2m(k)+1) ≤ d(y2n(k), y2n(k)+1) + d(y2n(k)+1, y2m(k)+1).

Letting k →∞ in the above inequality and using (9) and (12), we have

limk→∞d(y2n(k), y2m(k)+1) = ε. (14)

Putting x = y2n(k) and y = y2m(k)+1 in (3), we have

ψ(d(y2n(k)+1, y2m(k)+2)) ≤ ψ(H(Sx2n(k), Tx2m(k)+1)) ≤ ψ(M(x2n(k), x2m(k)+1))− φ(m(x2n(k), x2m(k)+1))

≤ ψ

(
max

{
d(fx2n(k), fx2m(k)+1), D(fx2n(k), Sx2n(k)), D(fx2m(k)+1, Tx2m(k)+1),

1
2 [D(fx2n(k), Tx2m(k)+1) +D(fx2m(k)+1, Sx2n(k))]

})
−φ

(
max

{
d(fx2n(k), fx2m(k)+1), D(fx2n(k), Sx2n(k)), D(fx2m(k)+1, Tx2m(k)+1)

})
≤ ψ

(
max

{
d(y2n(k), y2m(k)+1), d(y2n(k), y2n(k)+1), d(y2m(k)+1, y2m(k)+2),

1
2 [d(y2n(k), y2m(k)+2) + d(y2m(k)+1, y2n(k)+1)]

})
−φ

(
max

{
d(y2n(k), y2m(k)+1), d(y2n(k), y2n(k)+1), d(y2m(k)+1, y2m(k)+2)

})
.

Letting k →∞ in the above inequality and using (9), (11− 14) and using the continuity of φ and ψ, we have

ψ(ε) ≤ ψ(ε)− φ(ε),

which is a contradiction by virtue of a property of φ.
Therefore {y2n} is a Cauchy sequence. In view of (9), {yn} is a Cauchy sequence in X.
Since X is complete, then there exists a point z in X such that

limn→∞y2n+1 = z = limn→∞fx2n+1 ∈ Sx2n

and

limn→∞y2n+2 = z = limn→∞fx2n+2 ∈ Tx2n+1.

Since f(X) is closed, then there exist a point u in X such that fu = z.
Now firstly we have

ψ(D(Su, fx2n+2)) ≤ ψ(H(Su, Tx2n+1))

≤ ψ(M(u, x2n+1))− φ(m(u, x2n+1))

≤ ψ

(
max

{
d(fu, fx2n+1), D(fu, Su), D(fx2n+1, Tx2n+1),

1
2 [D(fu, Tx2n+1) +D(fx2n+1, Su)]

})
−φ(max{d(fu, fx2n+1), D(fu, Su), D(fx2n+1, Tx2n+1)}).

Taking limit n→∞, we have

ψ(D(Su, z)) ≤ ψ(max{d(z, z), D(z, Su), d(z, z),
1

2
[d(z, z) +D(z, Su)]})

−φ(max{d(z, z), D(z, Su), d(z, z)})

≤ ψ(max{0, D(Su, z), 0,
1

2
[0 +D(z, Su)]})

−φ(max{0, D(z, Su), 0})
≤ ψ(D(Su, z))− φ(D(Su, z)),
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which implies that φ(D(Su, z)) = 0. Hence D(Su, z) = 0, that is z ∈ Su.
Therefore z = fu ∈ Su.
Now if ffu = fu, then fz = z and from the (IT )- commutativity of S and f , we have

z = fz = ffu ∈ fSu ⊂ Sfu = Sz,

implies z = fz ∈ Sz.
Further

ψ(D(fx2n+1, Tu)) ≤ ψ(H(Sx2n, Tu))

≤ ψ(M(x2n, u))− φ(m(x2n, u))

≤ ψ

(
max

{
d(fx2n, fu), D(fx2n, Sx2n), D(fu, Tu),

1
2 [D(fx2n, Tu) +D(fu, Sx2n)]

})
−φ(max{d(fx2n, fu), D(fx2n, Sx2n), D(fu, Tu)}).

Taking limit n→∞, we have

ψ(D(z, Tu)) ≤ ψ(max{d(z, z), d(z, z), D(z, Tu),
1

2
[D(z, Tu) + d(z, z)]})

−φ(max{d(z, z), d(z, z), D(z, Tu)})

≤ ψ(max{0, 0, D(z, Tu),
1

2
[D(z, Tu) + 0]})

−φ(max{0, 0, D(z, Tu)})
≤ ψ(D(z, Tu))− φ(D(z, Tu)),

which implies that φ(D(z, Tu)) = 0. Hence D(z, Tu) = 0, that is z ∈ Tu.
Therefore z = fu ∈ Tu.

Now if ffu = fu, then fz = z and from the (IT )-commutativity of T and f , we have

z = fz = ffu ∈ fTu ⊂ Tfu = Tz,

implies z = fz ∈ Tz.
Thus z is a common fixed point of S, T and f .

Corollary 3.2. Let (X, d) be a complete metric space. Let S, T : X → C(X) be two multi-valued mappings
and f : X → X be a self-mapping such that for all x, y ∈ X

S(X) ∪ T (X) ⊂ f(X) (15)

f(X) is closed (16)

H(Sx, Ty) ≤ max
{
d(fx, fy), D(fx, Sx), D(fy, Ty), 12 [D(fx, Ty) +D(fy, Sx)]

}
−φ(max{d(fx, fy), D(fx, Sx), D(fy, Ty)}), (17)

where φ : [0,∞) → [0,∞) is a continuous function with φ(t) = 0 if and only if t = 0. Then S, f and T, f
have a coincidence point. Further, if S and f have a common fixed point fu provided ffu = fu and S, f are
(IT )-commuting at u ∈ C(S, f) and if T and f have a common fixed point fu provided ffu = fu and T, f are
(IT )-commuting at u ∈ C(T, f). Then S, T and f have a common fixed point.

Proof. By taking ψ as an identity function in the proof of Theorem 3.1, we can get the proof.

Corollary 3.3. Let (X, d) be a complete metric space. Let S : X → C(X) be a multi-valued mapping and
f : X → X be a single-valued mapping such that for all x, y ∈ X

S(X) ⊂ f(X) (18)

f(X) is closed (19)
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ψ(H(Sx, Sy)) ≤ ψ
(
max

{
d(fx, fy), D(fx, Sx), D(fy, Sy), 12 [D(fx, Sy) +D(fy, Sx)]

})
−φ(max{d(fx, fy), D(fx, Sx), D(fy, Sy)}), (20)

where φ : [0,∞) → [0,∞) is a continuous function with φ(t) = 0 if and only if t = 0 and ψ : [0,∞) → [0,∞) is
an altering distance function. Then S and f have a coincidence point. Further , if S and f have a common fixed
point fu provided ffu = fu and S, f are (IT )-commuting at u ∈ C(S, f).Then S and f have a common fixed point.

Proof. It may be completed following the proof of Theorem 3.1 by taking S = T .

Corollary 3.4. Let (X, d) be a complete metric space. Let S : X → C(X) be a multi-valued mapping such
that for all x, y ∈ X

ψ(H(Sx, Sy)) ≤ ψ
(
max

{
d(x, y), D(x, Sx), D(y, Sy), 12 [D(x, Sy) +D(y, Sx)]

})
−φ(max{d(x, y), D(x, Sx), D(y, Sy)}), (21)

where φ : [0,∞) → [0,∞) is a continuous function with φ(t) = 0 if and only if t = 0 and ψ : [0,∞) → [0,∞) is an
altering distance function.Then S has a unique fixed point.

Proof. If we take S = T and f as an identity mapping in Theorem 3.1, then we can get the proof.
Now taking clue from Example 3.1 of [6] we have an example.

Example 3.5. Let X = {0, 1, 2, 3, ....}. Let d : X ×X → R be given as

d(x, y) =

{
x+ y, if x 6= y
0, if x = y.

Then (X, d) is a complete metric space.
Let ψ : [0,∞)→ [0,∞) be defined as follows:

ψ(t) = t2, for t ∈ [0,∞).

Let φ : [0,∞)→ [0,∞) be defined as follows:

φ(s) =

{
s2

2 , if s ≤ 1
1
2 , if s > 1

for s ∈ [0,∞) .

Then φ and ψ have the properties mentioned in Theorem 3.1.
Let S : X → C(X) be defined as follows:

Sx =

{
{x− 1}, if x 6= 0
{0}, if x = 0.

Sol. We can see that mapping S is satisfying the contractive condition (21) but it is not satisfying the condition
(6) of [8, Page 266].

Note. In the above example, we set x = n+ 1 and y = n, where n is a positive integer.
Then according to the case x 6= y, if y 6= 0 and x > y,

H(Sx, Sy) = 2n− 1,

and

max
{
d(x, y), d(x, fx), d(y, fy), 12 [d(x, fy) + d(y, fx)]

}
= 2n+ 1.

Clearly

H(Sx, Sy) = knmax
{
d(x, y), d(x, fx), d(y, fy), 12 [d(x, fy) + d(y, fx)]

}
,

where

kn =
2n− 1

2n+ 1
.
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Since kn → 1 as n→∞, there dose not exist any k with 0 ≤ k < 1 such that

H(Sx, Sy) ≤ kmax
{
d(x, y), D(x, Sx), D(y, Sy), 12 [D(x, Sy) +D(y, Sx)]

}
,

for each x, y ∈ X.

Hence Example 3.5 does not satisfy condition (6) of [8]. This show that condition (21) is more general than (6) of [8].

Remark 3.6. In Corollary 3.4, we obtain slightly generalized version of Theorem 3.1 of [6] and Theorem 2.1 of
[11].

Remark 3.7. If we take S and T are single-valued mappings and f as an identity mapping in Theorem 3.1,
then we can get Theorem 3.2 of [6].

Remark 3.8. As it is shown in [6] that a generalized weakly contractive condition 2.1 of [6] is more general
than that (21) of Rhoades [27], so we can say that the contractive condition (3) and (17) are more general than the
contractive condition used in [33].
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[4] M. Chandra, S. N. Mishra, S. L. Singh and B. E. Rhoades, Coincidences and fixed points of non-expansive type multi-
valued and single-valued maps, Indian J. Pure Appl. Math. 26(1995), no. 5, 393-401.

[5] T. H. Chang, Common fixed point theorems for multi-valued mappings, Math. Japon. 41 (1995), no. 2, 311-320.

[6] B. S. Choudhury, P. Konar, B. E. Rhoades, N. Metiya, Fixed point theorems for generalized weakly contractive
mappings, Nonlinear Anal. 74 (2011), no. 6, 2116-2126.

[7] B. S. Choudhury and N. Metiya, Multi-valued and Single-valued fixed point results in partially ordered metric spaces,
Arab J. Math. Sci. 17 (2011), 135-151.
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