

Global Journal of Mathematical Analysis, 2 (4) (2014) 286-289 © Science Publishing Corporation www.sciencepubco.com/index.php/GJMA doi: 10.14419/gjma.v2i4.3497 Research Paper

Commutativity results and continuity of Jordan homomorphism on Banach algebras

A. Zivari-Kazempour

Department of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran Email: zivari@abru.ac.ir

Copyright ©2014 A. Zivari-Kazempour. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper we give conditions which entailing commutativity of Banach algebra \mathcal{A} and then we show that under special hypotheses, each Jordan homomorphism φ between Banach algebras \mathcal{A} and \mathcal{B} is continuous.

Keywords: Jordan homomorphism, ring homomorphism, commutative.

1. Introduction

Let \mathcal{A} and \mathcal{B} be Banach algebras and $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ be a linear map. Then φ is called Jordan homomorphism if

$$\varphi(ab + ba) = \varphi(a)\varphi(b) + \varphi(b)\varphi(a) \qquad (a, b \in \mathcal{A}),$$

or equivalently, $\varphi(a^2) = \varphi(a)^2$ for all $a \in \mathcal{A}$, [4]. Moreover, if φ is multiplicative, that is,

$$\varphi(ab) = \varphi(a)\varphi(b) \qquad (a, b \in \mathcal{A}),$$

then φ is called ring homomorphism.

It is obvious that ring homomorphisms are Jordan, but the converse is false, in general. In fact, the converse is true under a certain conditions. For example, each Jordan homomorphism from a commutative Banach algebra \mathcal{A} into \mathbb{C} is a ring homomorphism.

In [5], Zelazko proved that each Jordan homomorphism of Banach algebra \mathcal{A} into a semisimple commutative Banach algebra \mathcal{B} is ring homomorphism. See also [6] for another characterization of this result.

Le Page [1] has shown that a complex unital Banach algebra \mathcal{A} is necessarily commutative if it satisfies the following condition,

$$||ab|| \le ||ba||, \quad (a, b \in \mathcal{A}).$$

It is known that the Le Page's inequality does not imply commutativity in the non-unital case. A counter-example has been given in [2]. Also it has shown that the Banach algebra \mathcal{A} is commutative, if for all $a \in \mathcal{A}$, $||a||^2 \leq ||a^2||$, see [1] for example.

In this paper we investigate some conditions which entailing commutativity of Banach algebra \mathcal{A} and then we give a sufficient condition that each Jordan homomorphism $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ to be ring homomorphism.

2. Main Result

For Banach algebra \mathcal{A} , we denote $J_n(\mathcal{A}) = \{a \in \mathcal{A} : a^n = a\}$, and the Banach algebra \mathcal{A} is said to be idempotent if $J_2(\mathcal{A}) = \mathcal{A}$.

Proposition 2.1 Every idempotent Banach algebra \mathcal{A} is commutative.

Proof. Let a, b be arbitrary elements of \mathcal{A} . Then

$$a + b = (a + b)^2 = a^2 + b^2 + ab + ba = a + b + ab + ba.$$

Hence, ab = -ba. Thus,

$$ab = (ab)^2 = (-ba)^2 = (ba)^2 = ba.$$

Therefore ab = ba, and \mathcal{A} is commutative.

Corollary 2.2 Let \mathcal{A} be a unital Banach algebra such that $(ab)^2 = a^2b^2$, for all $a, b \in \mathcal{A}$. Then \mathcal{A} is commutative. Proof. Let e be a unit element of \mathcal{A} , then for all $a, b \in \mathcal{A}$,

$$(a(b+e))^2 = a^2(b+e)^2,$$

which proves that

$$(ab)^{2} + aba + a^{2}b + a^{2} = a^{2}b^{2} + 2a^{2}b + a^{2}.$$

Thus, $aba = a^2b$, for all $a, b \in \mathcal{A}$. Replacing a by a + e in the last equality, we get

$$(a+e)b(a+e) = (a+e)^2b$$

Therefore we conclude that ab = ba, as required.

The next example shows that the hypothesis that \mathcal{A} is unital in above corollary is essential.

Example 2.3 Let \mathcal{A} be a unital Banach algebra and let \mathcal{B} be the Banach algebra of all 2×2 matrices having $\begin{bmatrix} a & b \end{bmatrix}$ in the first line and $\begin{bmatrix} 0 & 0 \end{bmatrix}$ in the second line, for all $a, b \in \mathcal{A}$. Then \mathcal{B} is not unital, but it is obvious to check that $(xy)^2 = x^2y^2$, for all $x, y \in \mathcal{B}$. However, \mathcal{B} is not commutative.

Theorem 2.4 Let \mathcal{A} be a Banach algebra such that $J_3(\mathcal{A}) = \mathcal{A}$, then \mathcal{A} is commutative.

Proof. Let $a, b \in \mathcal{A}$ be arbitrary elements. Then

$$\begin{aligned} (a^{2}ba^{2} - ba^{2})^{2} &= (a^{2}ba^{2} - ba^{2})(a^{2}ba^{2} - ba^{2}) \\ &= (a^{2}ba^{2})(a^{2}ba^{2}) - (a^{2}ba^{2})(ba^{2}) - (ba^{2})(a^{2}ba^{2}) + (ba^{2})(ba^{2}) \\ &= (a^{2}ba^{4}ba^{2}) - (a^{2}ba^{2}ba^{2}) - (ba^{4}ba^{2}) + (ba^{2}ba^{2}) \\ &= (a^{2}ba^{2}ba^{2}) - (a^{2}ba^{2}ba^{2}) - (ba^{2}ba^{2}) + (ba^{2}ba^{2}) \\ &= 0. \end{aligned}$$

Thus, $(a^2ba^2 - ba^2)^2 = 0$. Similarly, we deduce $(a^2ba^2 - a^2b)^2 = 0$. So

$$(a^{2}ba^{2} - ba^{2})^{3} = (a^{2}ba^{2} - a^{2}b)^{3} = 0.$$

Therefore by assumption we have

$$a^2ba^2 - ba^2 = a^2ba^2 - a^2b = 0.$$

Thus,

$$a^2b = ba^2, \qquad (a, b \in \mathcal{A}).$$

Now by the above equation we get

$$ab = (ab)^3 = a(ba)^2b = (ba)^2ab = (bab)(a^2b)$$
$$= (bab)(ba^2) = b(ab^2)a^2 = b(b^2a)a^2 = b^3a^3 = ba.$$

Therefore ab = ba, and the proof is complete.

The set $Z(\mathcal{A}) = \{a \in \mathcal{A} : ab = ba \ (b \in \mathcal{A})\}$ is called the center of \mathcal{A} . Clearly, \mathcal{A} is commutative if and only if $Z(\mathcal{A}) = \mathcal{A}$.

(1)

(7)

Theorem 2.5 Let \mathcal{A} be a Banach algebra such that $a + a^2 \in Z(\mathcal{A})$ for all $a \in \mathcal{A}$. Then \mathcal{A} is commutative.

Proof. Let $a, b \in \mathcal{A}$. Then by assumption we get

$$(a+b) + (a+b)^2 \in Z(\mathcal{A}).$$

which shows that $ab + ba \in Z(\mathcal{A})$. Therefore

$$(ab+ba)a = a(ab+ba),$$

and so for all $a, b \in \mathcal{A}$

$$a^2b = ba^2.$$

On the other hand we have

$$(a+a^2)b = b(a+a^2).$$
 (2)

By (1) and (2), we get ab = ba and the proof is complete.

The proof of the following Lemma contained in [4].

Lemma 2.6 Let \mathcal{A} and \mathcal{B} be Banach algebras and $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ be a Jordan homomorphism. Then for all $a, b \in \mathcal{A}$,

$$\varphi(aba) = \varphi(a)\varphi(b)\varphi(a).$$

Theorem 2.7 Let $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ be a Jordan homomorphism. If $J_2(\mathcal{A}) = \mathcal{A}$, then φ is ring homomorphism.

Proof. Let $a, b \in \mathcal{A}$. Since \mathcal{A} is idempotent, we get ab + ba = 0. So

$$\varphi(a)\varphi(b) + \varphi(b)\varphi(a) = \varphi(ab + ba) = 0.$$

Thus,

$$\varphi(a)\varphi(b) = -\varphi(b)\varphi(a). \tag{3}$$

Since φ is Jordan, by above Lemma we get

$$\varphi(aba) = \varphi(a)\varphi(b)\varphi(a) = -\varphi(b)\varphi^2(a) = -\varphi(b)\varphi(a^2) = -\varphi(b)\varphi(a).$$
(4)

By proposition 2.1, \mathcal{A} is commutative, so

$$\varphi(aba) = \varphi(a^2b) = \varphi(ab). \tag{5}$$

Thus, (4) and (5) implies

$$\varphi(ab) = -\varphi(b)\varphi(a). \tag{6}$$

By (3) and (6) we deduce

$$\varphi(ab) = \varphi(a)\varphi(b),$$

for all $a, b \in \mathcal{A}$. Therefore φ is ring homomorphism.

Theorem 2.8 Let $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ be a linear map. If $J_3(\mathcal{A}) = \mathcal{A}$, then $\varphi(a) = 0$, for all $a \in \mathcal{A}$.

Proof. By Theorem 2.1, \mathcal{A} is commutative, so for all $a, b \in \mathcal{A}$, we have

$$\varphi(a+b) = \varphi((a+b)^3) = \varphi(a^3+b^3+3ab^2+3a^2b) = \varphi(a+b) + 3\varphi(ab^2+a^2b) = \varphi(a+b) + 2\varphi(ab^2+a^2b) = \varphi(a+b) + 2\varphi(ab^2+a^2b) = \varphi(a+b) = \varphi($$

Thus,

$$\varphi(ab^2 + a^2b) = 0.$$

Replacing b by b + c in (7), we have

$$\varphi(ab^2 + ac^2 + 2abc + a^2b + a^2c) = 0. \tag{8}$$

Combing (7) and (8), we get

$$\varphi(abc) = 0. \tag{9}$$

Take a = b = c in (9), then $\varphi(a^3) = 0$, and so $\varphi(a) = 0$, as required.

It is well-known that every multiplicative linear functional φ on Banach algebra \mathcal{A} is continuous and $\|\varphi\| \leq 1$, see [1] for example.

Now we have the following.

Proposition 2.9 Let $\varphi : \mathcal{A} \longrightarrow \mathbb{C}$ be a Jordan homomorphism. Then φ is continuous and $\|\varphi\| \leq 1$.

Proof. Suppose that there exist $a \in \mathcal{A}$ with ||a|| < 1 and $|\varphi(a)| > 1$. Take $b = a/\varphi(a)$. Then ||b|| < 1 and $\varphi(b) = 1$, which is contradiction by Theorem 6 of [6], therefore for all $a \in \mathcal{A}$ with ||a|| < 1, $|\varphi(a)| \le 1$. This complete the proof.

In [3], Draghia proved that every Jordan homomorphism from Banach algebra \mathcal{A} onto a semisimple Banach algebra \mathcal{B} is continuous.

The next result, which is a extension of above proposition, prove Draghia's Theorem without surjectivity.

Theorem 2.10 Let $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ be a Jordan homomorphism. If \mathcal{B} is semisimple, then φ is continuous.

Proof. Let $\psi: \mathcal{B} \longrightarrow \mathbb{C}$ be a Jordan homomorphism. Then ψ is bounded by above proposition, and

$$\psi \circ \varphi(a^2) = \psi(\varphi(a^2)) = \psi(\varphi(a)^2) = \psi(\varphi(a))^2 = \psi \circ \varphi(a)^2.$$

Therefore $\psi \circ \varphi$ is a Jordan homomorphism from \mathcal{A} into \mathbb{C} , so it is continuous by above proposition. Now suppose that (a_n) be a sequence in \mathcal{A} such that $\lim_n a_n = a$ and $\lim_n \varphi(a_n) = b$. Then

$$\psi(b) = \psi(\lim \varphi(a_n)) = \lim \psi \circ \varphi(a_n) = \psi \circ \varphi(a),$$

thus, $\psi(b - \varphi(a)) = 0$. Since \mathcal{B} is semisimple, we get $\varphi(a) = b$. Therefore φ is continuous by the close graph Theorem.

References

- [1] F. F. Bonsall and J. Duncan, Complete normed algebra, Springer-Verlag, New York, (1973).
- [2] O. H. Cheikh and M. Oudadess, "On a commutativity question in Banach algebras", *Gulf J. Sci. Res*, Vol. 2 (1988), pp. 173-179.
- [3] D. D. Draghia, "Continuity of Jordan homomorphisms of Banach algebras", Extracta Mathematicae, Vol. 10 (1995), pp. 58-59.
- [4] T. Palmer, Banach algebras and the general theory C^{*}-algebras, Vol I. Cambridge: Univ Press, (1994).
- [5] W. Zelazko, "A characterization of multiplicative linear functionals in complex Banach algebras", Studia Math, Vol. 30 (1968), pp. 83-85.
- [6] A. Zivari-kazempour, "A characterization of Jordan homomorphism on Banach algebras", Chinese J. Math, Vol. 2014, (2014), 3 pages.