# Commutativity results and continuity of Jordan homomorphism on Banach algebras 

A. Zivari-Kazempour<br>Department of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran<br>Email: zivari@abru.ac.ir

Copyright © 2014 A. Zivari-Kazempour. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


#### Abstract

In this paper we give conditions which entailing commutativity of Banach algebra $\mathcal{A}$ and then we show that under special hypotheses, each Jordan homomorphism $\varphi$ between Banach algebras $\mathcal{A}$ and $\mathcal{B}$ is continuous.


Keywords: Jordan homomorphism, ring homomorphism, commutative.

## 1. Introduction

Let $\mathcal{A}$ and $\mathcal{B}$ be Banach algebras and $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ be a linear map. Then $\varphi$ is called Jordan homomorphism if

$$
\varphi(a b+b a)=\varphi(a) \varphi(b)+\varphi(b) \varphi(a) \quad(a, b \in \mathcal{A})
$$

or equivalently, $\varphi\left(a^{2}\right)=\varphi(a)^{2}$ for all $a \in \mathcal{A}$, [4]. Moreover, if $\varphi$ is multiplicative, that is,

$$
\varphi(a b)=\varphi(a) \varphi(b) \quad(a, b \in \mathcal{A})
$$

then $\varphi$ is called ring homomorphism.
It is obvious that ring homomorphisms are Jordan, but the converse is false, in general. In fact, the converse is true under a certain conditions. For example, each Jordan homomorphism from a commutative Banach algebra $\mathcal{A}$ into $\mathbb{C}$ is a ring homomorphism.

In [5], Zelazko proved that each Jordan homomorphism of Banach algebra $\mathcal{A}$ into a semisimple commutative Banach algebra $\mathcal{B}$ is ring homomorphism. See also [6] for another characterization of this result.

Le Page [1] has shown that a complex unital Banach algebra $\mathcal{A}$ is necessarily commutative if it satisfies the following condition,

$$
\|a b\| \leq\|b a\|, \quad(a, b \in \mathcal{A})
$$

It is known that the Le Page's inequality does not imply commutativity in the non-unital case. A counter-example has been given in [2]. Also it has shown that the Banach algebra $\mathcal{A}$ is commutative, if for all $a \in \mathcal{A},\|a\|^{2} \leq\left\|a^{2}\right\|$, see [1] for example.

In this paper we investigate some conditions which entailing commutativity of Banach algebra $\mathcal{A}$ and then we give a sufficient condition that each Jordan homomorphism $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ to be ring homomorphism.

## 2. Main Result

For Banach algebra $\mathcal{A}$, we denote $J_{n}(\mathcal{A})=\left\{a \in \mathcal{A}: a^{n}=a\right\}$, and the Banach algebra $\mathcal{A}$ is said to be idempotent if $J_{2}(\mathcal{A})=\mathcal{A}$.
Proposition 2.1 Every idempotent Banach algebra $\mathcal{A}$ is commutative.
Proof. Let $a, b$ be arbitrary elements of $\mathcal{A}$. Then

$$
a+b=(a+b)^{2}=a^{2}+b^{2}+a b+b a=a+b+a b+b a .
$$

Hence, $a b=-b a$. Thus,

$$
a b=(a b)^{2}=(-b a)^{2}=(b a)^{2}=b a .
$$

Therefore $a b=b a$, and $\mathcal{A}$ is commutative.
Corollary 2.2 Let $\mathcal{A}$ be a unital Banach algebra such that $(a b)^{2}=a^{2} b^{2}$, for all $a, b \in \mathcal{A}$. Then $\mathcal{A}$ is commutative.
Proof. Let $e$ be a unit element of $\mathcal{A}$, then for all $a, b \in \mathcal{A}$,

$$
(a(b+e))^{2}=a^{2}(b+e)^{2}
$$

which proves that

$$
(a b)^{2}+a b a+a^{2} b+a^{2}=a^{2} b^{2}+2 a^{2} b+a^{2} .
$$

Thus, $a b a=a^{2} b$, for all $a, b \in \mathcal{A}$. Replacing $a$ by $a+e$ in the last equality, we get

$$
(a+e) b(a+e)=(a+e)^{2} b
$$

Therefore we conclude that $a b=b a$, as required.
The next example shows that the hypothesis that $\mathcal{A}$ is unital in above corollary is essential.
Example 2.3 Let $\mathcal{A}$ be a unital Banach algebra and let $\mathcal{B}$ be the Banach algebra of all $2 \times 2$ matrices having $\left[\begin{array}{ll}a & b\end{array}\right]$ in the first line and $\left[\begin{array}{ll}0 & 0\end{array}\right]$ in the second line, for all $a, b \in \mathcal{A}$. Then $\mathcal{B}$ is not unital, but it is obvious to check that $(x y)^{2}=x^{2} y^{2}$, for all $x, y \in \mathcal{B}$. However, $\mathcal{B}$ is not commutative.
Theorem 2.4 Let $\mathcal{A}$ be a Banach algebra such that $J_{3}(\mathcal{A})=\mathcal{A}$, then $\mathcal{A}$ is commutative.
Proof. Let $a, b \in \mathcal{A}$ be arbitrary elements. Then

$$
\begin{aligned}
\left(a^{2} b a^{2}-b a^{2}\right)^{2} & =\left(a^{2} b a^{2}-b a^{2}\right)\left(a^{2} b a^{2}-b a^{2}\right) \\
& =\left(a^{2} b a^{2}\right)\left(a^{2} b a^{2}\right)-\left(a^{2} b a^{2}\right)\left(b a^{2}\right)-\left(b a^{2}\right)\left(a^{2} b a^{2}\right)+\left(b a^{2}\right)\left(b a^{2}\right) \\
& =\left(a^{2} b a^{4} b a^{2}\right)-\left(a^{2} b a^{2} b a^{2}\right)-\left(b a^{4} b a^{2}\right)+\left(b a^{2} b a^{2}\right) \\
& =\left(a^{2} b a^{2} b a^{2}\right)-\left(a^{2} b a^{2} b a^{2}\right)-\left(b a^{2} b a^{2}\right)+\left(b a^{2} b a^{2}\right) \\
& =0
\end{aligned}
$$

Thus, $\left(a^{2} b a^{2}-b a^{2}\right)^{2}=0$. Similarly, we deduce $\left(a^{2} b a^{2}-a^{2} b\right)^{2}=0$. So

$$
\left(a^{2} b a^{2}-b a^{2}\right)^{3}=\left(a^{2} b a^{2}-a^{2} b\right)^{3}=0
$$

Therefore by assumption we have

$$
a^{2} b a^{2}-b a^{2}=a^{2} b a^{2}-a^{2} b=0
$$

Thus,

$$
a^{2} b=b a^{2}, \quad(a, b \in \mathcal{A})
$$

Now by the above equation we get

$$
\begin{aligned}
a b=(a b)^{3}=a(b a)^{2} b=(b a)^{2} a b & =(b a b)\left(a^{2} b\right) \\
& =(b a b)\left(b a^{2}\right)=b\left(a b^{2}\right) a^{2}=b\left(b^{2} a\right) a^{2}=b^{3} a^{3}=b a .
\end{aligned}
$$

Therefore $a b=b a$, and the proof is complete.
The set $Z(\mathcal{A})=\{a \in \mathcal{A}: a b=b a(b \in \mathcal{A})\}$ is called the center of $\mathcal{A}$. Clearly, $\mathcal{A}$ is commutative if and only if $Z(\mathcal{A})=\mathcal{A}$.

Theorem 2.5 Let $\mathcal{A}$ be a Banach algebra such that $a+a^{2} \in Z(\mathcal{A})$ for all $a \in \mathcal{A}$. Then $\mathcal{A}$ is commutative. Proof. Let $a, b \in \mathcal{A}$. Then by assumption we get

$$
(a+b)+(a+b)^{2} \in Z(\mathcal{A})
$$

which shows that $a b+b a \in Z(\mathcal{A})$. Therefore

$$
(a b+b a) a=a(a b+b a)
$$

and so for all $a, b \in \mathcal{A}$
$a^{2} b=b a^{2}$.
On the other hand we have
$\left(a+a^{2}\right) b=b\left(a+a^{2}\right)$.
By (1) and (2), we get $a b=b a$ and the proof is complete.
The proof of the following Lemma contained in [4].
Lemma 2.6 Let $\mathcal{A}$ and $\mathcal{B}$ be Banach algebras and $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ be a Jordan homomorphism. Then for all $a, b \in \mathcal{A}$,

$$
\varphi(a b a)=\varphi(a) \varphi(b) \varphi(a)
$$

Theorem 2.7 Let $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ be a Jordan homomorphism. If $J_{2}(\mathcal{A})=\mathcal{A}$, then $\varphi$ is ring homomorphism.
Proof. Let $a, b \in \mathcal{A}$. Since $\mathcal{A}$ is idempotent, we get $a b+b a=0$. So

$$
\varphi(a) \varphi(b)+\varphi(b) \varphi(a)=\varphi(a b+b a)=0
$$

Thus,
$\varphi(a) \varphi(b)=-\varphi(b) \varphi(a)$.
Since $\varphi$ is Jordan, by above Lemma we get
$\varphi(a b a)=\varphi(a) \varphi(b) \varphi(a)=-\varphi(b) \varphi^{2}(a)=-\varphi(b) \varphi\left(a^{2}\right)=-\varphi(b) \varphi(a)$.
By proposition $2.1, \mathcal{A}$ is commutative, so
$\varphi(a b a)=\varphi\left(a^{2} b\right)=\varphi(a b)$.
Thus, (4) and (5) implies
$\varphi(a b)=-\varphi(b) \varphi(a)$.
By (3) and (6) we deduce

$$
\varphi(a b)=\varphi(a) \varphi(b)
$$

for all $a, b \in \mathcal{A}$. Therefore $\varphi$ is ring homomorphism.
Theorem 2.8 Let $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ be a linear map. If $J_{3}(\mathcal{A})=\mathcal{A}$, then $\varphi(a)=0$, for all $a \in \mathcal{A}$.
Proof. By Theorem 2.1, $\mathcal{A}$ is commutative, so for all $a, b \in \mathcal{A}$, we have

$$
\varphi(a+b)=\varphi\left((a+b)^{3}\right)=\varphi\left(a^{3}+b^{3}+3 a b^{2}+3 a^{2} b\right)=\varphi(a+b)+3 \varphi\left(a b^{2}+a^{2} b\right)
$$

Thus,
$\varphi\left(a b^{2}+a^{2} b\right)=0$.

Replacing $b$ by $b+c$ in (7), we have
$\varphi\left(a b^{2}+a c^{2}+2 a b c+a^{2} b+a^{2} c\right)=0$.
Combing (7) and (8), we get
$\varphi(a b c)=0$.
Take $a=b=c$ in (9), then $\varphi\left(a^{3}\right)=0$, and so $\varphi(a)=0$, as required.
It is well-known that every multiplicative linear functional $\varphi$ on Banach algebra $\mathcal{A}$ is continuous and $\|\varphi\| \leq 1$, see [1] for example.

Now we have the following.
Proposition 2.9 Let $\varphi: \mathcal{A} \longrightarrow \mathbb{C}$ be a Jordan homomorphism. Then $\varphi$ is continuous and $\|\varphi\| \leq 1$.
Proof. Suppose that there exist $a \in \mathcal{A}$ with $\|a\|<1$ and $|\varphi(a)|>1$. Take $b=a / \varphi(a)$. Then $\|b\|<1$ and $\varphi(b)=1$, which is contradiction by Theorem 6 of $[6]$, therefore for all $a \in \mathcal{A}$ with $\|a\|<1,|\varphi(a)| \leq 1$. This complete the proof.

In [3], Draghia proved that every Jordan homomorphism from Banach algebra $\mathcal{A}$ onto a semisimple Banach algebra $\mathcal{B}$ is continuous.

The next result, which is a extension of above proposition, prove Draghia's Theorem without surjectivity.
Theorem 2.10 Let $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ be a Jordan homomorphism. If $\mathcal{B}$ is semisimple, then $\varphi$ is continuous.
Proof. Let $\psi: \mathcal{B} \longrightarrow \mathbb{C}$ be a Jordan homomorphism. Then $\psi$ is bounded by above proposition, and

$$
\psi \circ \varphi\left(a^{2}\right)=\psi\left(\varphi\left(a^{2}\right)\right)=\psi\left(\varphi(a)^{2}\right)=\psi(\varphi(a))^{2}=\psi \circ \varphi(a)^{2}
$$

Therefore $\psi \circ \varphi$ is a Jordan homomorphism from $\mathcal{A}$ into $\mathbb{C}$, so it is continuous by above proposition. Now suppose that $\left(a_{n}\right)$ be a sequence in $\mathcal{A}$ such that $\lim _{n} a_{n}=a$ and $\lim _{n} \varphi\left(a_{n}\right)=b$. Then

$$
\psi(b)=\psi\left(\lim _{n} \varphi\left(a_{n}\right)\right)=\lim _{n} \psi \circ \varphi\left(a_{n}\right)=\psi \circ \varphi(a),
$$

thus, $\psi(b-\varphi(a))=0$. Since $\mathcal{B}$ is semisimple, we get $\varphi(a)=b$. Therefore $\varphi$ is continuous by the close graph Theorem.

## References

[1] F. F. Bonsall and J. Duncan, Complete normed algebra, Springer-Verlag, New York, (1973).
[2] O. H. Cheikh and M. Oudadess, "On a commutativity question in Banach algebras", Gulf J. Sci. Res, Vol. 2 (1988), pp. 173-179.
[3] D. D. Draghia, "Continuity of Jordan homomorphisms of Banach algebras", Extracta Mathematicae, Vol. 10 (1995), pp. 58-59.
[4] T. Palmer, Banach algebras and the general theory $C^{*}$-algebras, Vol I. Cambridge: Univ Press, (1994).
[5] W. Zelazko, "A characterization of multiplicative linear functionals in complex Banach algebras", Studia Math, Vol. 30 (1968), pp. 83-85.
[6] A. Zivari-kazempour, "A characterization of Jordan homomorphism on Banach algebras", Chinese J. Math, Vol. 2014, (2014), 3 pages.

