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Abstract

In the paper, by two methods, the authors find an explicit formula for computing Bell numbers in terms of Kummer
confluent hypergeometric functions and Stirling numbers of the second kind. Moreover, the authors supply an
alternative proof of the well-known “triangular” recurrence relation for Stirling numbers of the second kind. In a
remark, the authors reveal the combinatorial interpretation of the special values for Kummer confluent hypergeo-
metric functions and the total sum of Lah numbers.
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1 Introduction

In combinatorics, Bell numbers, usually denoted by Bn for n ∈ {0} ∪ N, count the number of ways a set with n
elements can be partitioned into disjoint and non-empty subsets. These numbers have been studied by mathemati-
cians since the 19th century, and their roots go back to medieval Japan, but they are named after Eric Temple Bell,
who wrote about them in the 1930s. Every Bell number Bn may be generated by

eex−1 =
∞∑

k=0

Bk
xk

k!
(1.1)

or, equivalently, by

ee−x−1 =
∞∑

k=0

(−1)kBk
xk

k!
. (1.2)
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In combinatorics, Stirling numbers arise in a variety of combinatorics problems. They are introduced in the
eighteen century by James Stirling. There are two kinds of Stirling numbers: Stirling numbers of the first kind and
Stirling numbers of the second kind. Every Stirling number of the second kind, usually denoted by S(n, k), is the
number of ways of partitioning a set of n elements into k nonempty subsets, may be computed by

S(n, k) =
1
k!

k∑

i=0

(−1)i

(
k

i

)
(k − i)n, (1.3)

and may be generated by

(ex − 1)k

k!
=

∞∑

n=k

S(n, k)
xn

n!
, k ∈ {0} ∪ N. (1.4)

In the theory of special functions, the hypergeometric functions are denoted and defined by

pFq(a1, . . . , ap; b1, . . . , bq;x) =
∞∑

n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

xn

n!
(1.5)

for bi /∈ {0,−1,−2, . . . } and p, q ∈ N, where (a)0 = 1 and (a)n = a(a + 1) · · · (a + n− 1) for n ∈ N and any complex
number a is called the rising factorial. Specially, the series

1F1(a; b; z) =
∞∑

k=0

(a)k

(b)k

zk

k!
(1.6)

is called Kummer confluent hypergeometric function.
In combinatorics or number theory, it is common knowledge that Bell numbers Bn may be computed in terms

of Stirling numbers of the second kind S(n, k) by

Bn =
n∑

k=1

S(n, k). (1.7)

In this paper, by two methods, we will find a new explicit formula for computing Bell numbers Bn in terms
of Kummer confluent hypergeometric functions 1F1(k + 1; 2; 1) and Stirling numbers of the second kind S(n, k) as
follows.

Theorem 1. For n ∈ N, Bell numbers Bn may be expressed as

Bn =
1
e

n∑

k=1

(−1)n−kk!1F1(k + 1; 2; 1)S(n, k). (1.8)

It is well known in combinatorics that Stirling numbers of the second kind S(n, k) satisfy the “triangular”
recurrence relation

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k), k, n ≥ 1 (1.9)

and

S(n, 0) = S(0, k) = 0, S(0, 0) = 1.

See [2, p. 208, Theorem A]. In [2, pp. 208–209], the author provided an analytical proof and a combinatorial proof
of (1.9). In Section 3 of this paper, we will supply an alternative proof of (1.9) by virtue of some properties of the
polylogarithm Lin(z) which may be defined by

Lin(z) =
∞∑

k=1

zk

kn
(1.10)

over the open unit disk in the complex plane C and extended to the whole complex plane C uniquely via analytic
continuation.
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2 Proofs of Theorem 1

We now start out to verify Theorem 1 as follows.

First proof. Among other things, it was obtained in [8, Theorem 1.2] that the function

Hk(z) = e1/z −
k∑

m=0

1
m!

1
zm

(2.1)

for k ∈ {0} ∪ N and z 6= 0 has the integral representation

Hk(z) =
1

k!(k + 1)!

∫ ∞

0
1F2(1; k + 1, k + 2; t)tke−zt d t, <(z) > 0. (2.2)

See also [6, Section 1.2] and [7, Lemma 2.1]. When k = 0, the integral representation (2.2) becomes

e1/z = 1 +
∫ ∞

0

I1

(
2
√

t
)

√
t

e−zt d t, <(z) > 0, (2.3)

where Iν(z) stands for the modified Bessel function of the first kind

Iν(z) =
∞∑

k=0

1
k!Γ(ν + k + 1)

(
z

2

)2k+ν

(2.4)

for ν ∈ R and z ∈ C, see [1, p. 375, 9.6.10], and Γ represents the classical Euler gamma function which may be
defined by

Γ(z) =
∫ ∞

0

tz−1e−t d t, <z > 0, (2.5)

see [1, p. 255]. Replacing z by ex in (2.3) gives

e1/ex

= ee−x

= 1 +
∫ ∞

0

I1

(
2
√

t
)

√
t

e−ext d t. (2.6)

Differentiating n ≥ 1 times with respect to x on both sides of (2.6) and (1.2) gives

dn ee−x

dxn
=

∫ ∞

0

I1

(
2
√

t
)

√
t

dn e−ext

dxn
d t (2.7)

and

dn ee−x

dxn
= e

∞∑

k=n

(−1)kBk
xk−n

(k − n)!
. (2.8)

From (2.7) and (2.8), it follows that

e

∞∑

k=n

(−1)kBk
xk−n

(k − n)!
=

∫ ∞

0

I1

(
2
√

t
)

√
t

dn e−ext

dxn
d t.

Taking x → 0 in the above equation yields

(−1)neBn =
∫ ∞

0

I1

(
2
√

t
)

√
t

lim
x→0

dn e−ext

dxn
d t. (2.9)

In combinatorics, it is well known that Bell polynomials of the second kind, or say, the partial Bell polynomials,
denoted by Bn,k(x1, x2, . . . , xn−k+1), may be defined by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n,`i∈{0}∪N∑n
i=1 i`i=n∑n
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏

i=1

(xi

i!

)`i

(2.10)
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for n ≥ k ≥ 0, see [2, p. 134, Theorem A], and satisfy

Bn,k

(
abx1, ab2x2, . . . , abn−k+1xn−k+1

)
= akbnBn,k(x1, xn, . . . , xn−k+1) (2.11)

and

Bn,k(1, 1, . . . , 1) = S(n, k), (2.12)

see [2, p. 135], where a and b are any complex numbers. The well-known Faà di Bruno formula may be described
in terms of Bell polynomials of the second kind Bn,k(x1, x2, . . . , xn−k+1) by

dn

d xn
f ◦ g(x) =

n∑

k=1

f (k)(g(x))Bn,k

(
g′(x), g′′(x), . . . , g(n−k+1)(x)

)
, (2.13)

see [2, p. 139, Theorem C]. By Faà di Bruno formula (2.13) and the identities (2.11) and (2.12), we have

dn e−ext

dxn
=

n∑

k=1

e−extBn,k(−ext,−ext, . . . ,−ext) = e−ext
n∑

k=1

(−ext)kBn,k(1, 1, . . . , 1)

= e−ext
n∑

k=1

(−ext)kS(n, k) → e−t
n∑

k=1

(−t)kS(n, k)

as x → 0. Substituting the above limit into (2.9) leads to

Bn =
1
e

n∑

k=1

(−1)n−kS(n, k)
∫ ∞

0

I1

(
2
√

t
)
tk−1/2e−t d t =

1
e

n∑

k=1

(−1)n−kS(n, k)k!1F1(k + 1; 2; 1).

The required proof is complete.

Second proof. From the definition of the exponential function and the formula

k!
zk+1

=
∫ ∞

0

e−zttk d t, (2.14)

it was obtained that

e1/z = 1 +
∫ ∞

0

e−zt
∞∑

k=0

tk

k!(k + 1)!
d t. (2.15)

Substituting z with ex and using the exponential generating function for Bell polynomials

∞∑
n=0

Bn(t)
n!

xn = et(ex−1) (2.16)

lead to

e

∞∑
n=0

Bn(1)
n!

(−x)n = 1 +
∫ ∞

0

e−t
∞∑

n=0

Bn(−t)
n!

xn
∞∑

k=0

tk

k!(k + 1)!
d t. (2.17)

Equating coefficients of xn and using the fact that

Bn(t) =
∞∑

k=0

S(n, k)tk (2.18)

and Bn(1) = Bn, the equation (1.8) follows.
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3 An alternative proof of the recurrence relation (1.9)

In [11], the formula
n∑

k=1

S(n, k)(k − 1)!zk = (−1)n Li1−n

(
1 +

1
z

)
(3.1)

for n ≥ 2 is listed. Making use of

d
d x

Lin(x) =
1
x

Lin−1(x), (3.2)

see [10], and differentiating with respect to z = x on both sides of (3.1) give
n∑

k=1

S(n, k)k!xk−1 = (−1)n+1 1
(1 + x)x

Li−n

(
1 +

1
x

)

which may be reformulated as

(1 + x)
n∑

k=1

S(n, k)k!xk = (−1)n+1 Li−n

(
1 +

1
x

)
. (3.3)

Comparing (3.1) with (3.3) yields

n+1∑

k=1

S(n + 1, k)(k − 1)!xk = (1 + x)
n∑

k=1

S(n, k)k!xk =
n∑

k=1

S(n, k)k!xk +
n+1∑

k=2

S(n, k − 1)(k − 1)!xk

= S(n, 1)x + S(n, n)n!xn+1 +
n∑

k=2

[kS(n, k) + S(n, k − 1)](k − 1)!xk

= x + n!xn+1 +
n∑

k=2

[kS(n, k) + S(n, k − 1)](k − 1)!xk.

This implies that S(n, 1) = S(n, n) = 1 and

S(n + 1, k) = S(n, k − 1) + kS(n, k), k, n ≥ 2.

Thus, we recover the recurrence relation (1.9).

4 Remarks

Remark 1. In view of the formula (1.7), it is not clear why the new formula (1.8) is of interest for computing Bn.
Changing the point of view, it could be of interest to know that the sum on the right side of (1.8) evaluates to Bell
number Bn.
Remark 2. The equation (1.8) may be rewritten as

n∑

k=1

(−1)n−kakS(n, k) = Bn, (4.1)

where ak is sequence A000262 in the Online Encyclopedia of Integer Sequences. Such a sequence ak has a nice
combinatorial interpretation: it counts “the sets of lists, or the number of partitions of {1, 2 . . . , k} into any number
of lists, where a list means an ordered subset.” In [4], it was obtained that

ak =
k∑

`=1

L(k, `), k ∈ N. (4.2)

See also [3]. This reveals the combinatorial interpretation of the special sequence k!1F1(k + 1; 2; 1) and the total
sum Lk =

∑k
`=1 L(k, `) of Lah numbers L(k, `).

Remark 3. By the way, the authors of the paper [9] discovered some new results on the polylogarithm Lin(z).
Remark 4. This paper is a revised and extended version of the preprint [5].
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