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Abstract

The aim of this paper is to study the nonlocal problem with the integral condition of the first kind for the heat
equation. We prove existense and uniqueness of a generalized solution for this problem. The proof is based on the
obtained apriory estimate and Galerkin method.
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1. Introduction

Over the previous years, various phenomena of modern natural science were successfully described in terms of
nonlocal mathematical models and nonlocal problems for evolution equations have been studied actively. Problems
with nonlocal integral conditions form an important class of nonlocal problems. The first papers devoted to second-
order partial differential equations with nonlocal integral conditions go back to Cannon [1] and Kamynin [4]. Here
are some recent works [11], [12], [13]. See also references therein. Nonlocal boundary value problems with the
second kind integral conditions for parabolic equations have been studied in [3], [14], [5].

In this article, we consider the problem for the equation

ut = uxx + c(t)u + f(x, t), (x, t) ∈ QT , (1)

with the initial and nonlocal boundary conditions

u(x, 0) = ϕ(x), (2)

ux(0, t) = 0, (3)

∫ l

0

K(x)u(x, t) dx = E(t), (4)

where QT = {(x, t) : 0 < x < l, 0 < t < T}.
Note that the integral condition (4) has the form of the first kind operator equation which is incorrect and can

be solved with sufficient restrictions on the kernel and right-hand side part [2]. For the second kind nonlocal integral

condition, e.g. u(l, t) +
∫ l

0

K(x)u(x, t) dx = g(t), such problems do not appear as we can introduce the operator
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Bu =
∫ l

0

K(x)u(x, t) dx and consider the inegral equation of the second kind u(x, t) +
∫ l

0

K(ξ)u(ξ, t) dξ = G(x, t),

where G(l, t) = g(x). This technique has been applied in [6], [7] for a multidimensional hyperbolic equation.
Motivated by the above works, we consider the solvability of the nonlocal problem (1)-(4) with the inegral

condition in the form of the first kind integral operator. It is shown that in case of a single space variable we can
avoid difficulties caused by the condition (4).

2. Preliminary notes

Lemma 2.1 Let c(t) ∈ C[0, T ]; f(x, t) ∈ L2(QT ); ϕ(x) ∈ W 1
2 (0, l); K(x) ∈ C2[0, l], K(l) 6= 0; E(t) ∈ C1[0, T ] and

E(0) =
∫ l

0

K(x)ϕ(x) dx. (5)

Then the problem (1)-(4) is equivalent to the problem

ut = uxx + c(t)u + f(x, t),

u(x, 0) = ϕ(x), ux(0, t) = 0,

ux(l, t) =
∫ l

0

H(x)ux(x, t) dx + F (t), (6)

where H(x) =
Kx(x)
K(l)

, F (t) =
E′(t)− c(t)E(t)− f1

K(l)
, f1(t) =

∫ l

0

Kf dx.

Proof. Let u(x, t) be the solution of the problem (1)-(4). Then (1) implies that

∫ l

0

K(x)ut(x, t) dx =
∫ l

0

K(x)uxx(x, t) dx +
∫ l

0

K(x)c(t)u(x, t) dx +
∫ l

0

K(x)f(x, t) dx. (7)

In view of the condition (4) and identity (7) we obtain

E′(t) = K(l)ux(l, t) + c(t)E(t) + f1(t)−
∫ l

0

Kxux(x, t) dx. (8)

And hence, ux(l, t) =
1

K(l)

(∫ l

0

Kx(x)ux(x, t) dx + E′(t)− c(t)E(t)− f1

)
.

Now, consider the problem (1)-(3), (6). The condition (8) follows from (6) and then

E′(t) =
∫ l

0

K(x)uxx dx + c(t)E(t) +
∫ l

0

K(x)f(x, t) dx.

As (7) holds we obtain

E′(t) =
∫ l

0

K(x)ut dx−
∫ l

0

K(x)c(t)u dx−
∫ l

0

K(x)f(x, t) dx + c(t)E(t) +
∫ l

0

K(x)f(x, t) dx.

Therefore,
d

dt

(
E(t)−

∫ l

0

K(x)u dx

)
= c(t)

(
E(t)−

∫ l

0

K(x)c(t)u dx

)
.

Denote v(t) = E(t) −
∫ l

0

K(x)u dx. Then the function v(t) is a solution of the following Cauchy problem

v′(t) = c(t)v(t), v(0) = 0.
Under the conditions on the coefficient c(t) this problem has a unique solution v = 0 [10], and hence,
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E(t)−
∫ l

0

K(x)u dx = 0 and
∫ l

0

K(x)u(x, t) dx = E(t). This ends the proof.

We shall study the problem (1)- (3), (6).
Let W 1

2 (QT ) be the usual Sobolev space. We shall define

Ŵ 1
2 (QT ) = {v : v ∈ W 1

2 (QT ), v(x, T ) = 0}.
First we give a definition of a generalized solution of the problem using the standard method [9]. We assume

that u(x, t) is a classical solution of the problem (1)-(3), (6), multiply (1) by η ∈ Ŵ 1
2 (QT ) and integrate over QT .

It follows from (2), (3), (6) and integration by parts that
∫

QT

(−uηt + uxηx − cuη) dxdt =
∫

QT

fη dxdt +
∫ l

0

ϕ(x)η(x, 0)dx +
∫ T

0

(∫ l

0

H(x)ux(x, t) dx + F (t)

)
η(l, t) dt. (9)

Definition 2.2 A function u(x, t) ∈ W 1,0
2 (QT ) is said to be a generalized solution of the problem (1) - (3), (6) if

for every η(x, t) ∈ Ŵ 1
2 (QT ) the identity (9) holds.

3. Main result

Theorem 3.1 Let c(t) ∈ C[0, T ]; f(x, t) ∈ L2(QT ); ϕ(x) ∈ W 1
2 (0, l); K(x) ∈ C2[0, l], K(l) 6= 0; E(t) ∈ C1[0, T ],∫ l

0

K2
xx(x) dx 6= 0, Kx(0) = 0 and E(0) =

∫ l

0

K(x)ϕ(x) dx. Then there exists a unique generalized solution of the

problem (1)-(3), (6).

Proof. First we prove the uniqueness. To this end we obtain several inequalities and then use Gronwall’s lemma.
To prove the existence we construct approximations of the generalized solution by Galerkin method and obtain a
priori estimates to guarantee convergence of approximations. Finally, we show that the limit of approximations is
the required solution.

1. Uniqueness. Assume that there exist two different solutions u1(x, t) and u2(x, t) of the problem (1)-(3),
(6). Then u(x, t) = u1(x, t)− u2(x, t) is an element of W 1,0

2 (QT ) and the identity

∫

QT

(−uηt + uxηx − cuη) dxdt =
∫ T

0

(∫ l

0

H(x)ux(x, t) dx

)
η(l, t) dt

holds for every η(x, t) ∈ Ŵ 1
2 (QT ). It follows from integration by parts and the condition H(0) = 0 that

∫

QT

(−uηt + uxηx − cuη) dxdt =
∫ T

0

(
H(l)u(l, t)−

∫ l

0

Hx(x)u(x, t) dx

)
η(l, t) dt. (10)

For an arbitrary b ∈ [0, T ], take η as

η(x, t) =





0, t ∈ [b, T ],∫ t

b

u(x, τ) dτ, t ∈ [0, b],
(11)

It is easy to see that η(x, t) ∈ W 1
2 (QT ), η(x, T ) = 0 and ηxt = ux ∈ L2(QT ).

Substitute η(x, t) from (11) in (10) and express u in terms of η and its derivatives. As a result we obtain the
equality
∫ b

0

∫ l

0

(−η2
t + ηtxηx − cηtη) dx dt =

∫ b

0

(
H(l)ηt(l, t)−

∫ l

0

Hxηt dx

)
η(l, t) dt. (12)

It follows from integration by parts in the second term in the left-habd side and conditions η(x, b) = 0, ηx(x, b) =
0 that

−
∫ b

0

∫ l

0

η2
t dx dt− 1

2

∫ l

0

η2
x(x, 0) dx−

∫ b

0

∫ l

0

cηtη dx dt =
∫ b

0

η(l, t)

(
H(l)ηt(l, t)−

∫ l

0

Hxηt dx

)
dt.
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Since
∫ b

0

H(l)η(l, t)ηt(l, t) dt = −1
2
H(l)η2(l, 0), so

∫

Qb

η2
t dx dt +

1
2

∫ l

0

η2
x(x, 0) dx = −

∫

Qb

cηtη dx dt +
1
2
H(l)η2(l, 0) +

∫ b

0

η(l, t)
∫ l

0

Hxηt dx dt. (13)

Our next aim is to derive an estimate of a right-hand side of (13). Taking into account hypotheses of the theorem
we can see that there exists positive number c1 such that max |c(t)| ≤ c1. Applying the Cauchy inequality we obtain
∣∣∣∣
∫

Qb

cηtη dx dt

∣∣∣∣ ≤ c2
1

∫

Qb

η2 dx dt +
1
4

∫

Qb

η2
t dx dt, (14)

∣∣∣∣∣
∫ b

0

η(l, t)
∫ l

0

Hxηt dx dt

∣∣∣∣∣ ≤
∫ b

0

|η(l, t)|
∣∣∣∣∣
∫ l

0

Hxηt dx

∣∣∣∣∣ dt ≤ H1

∫ b

0

η2(l, t) dt +
1

4H1

∫ b

0

(∫ l

0

Hxηt dx

)2

dt,

where H1 =
∫ l

0

H2
x dx. Based on [8], we note that for any u ∈ W 1,0

2 (QT ) the following inequality holds

u2(l, t) ≤
∫ l

0

(
εu2(x, t) + a(ε)u2

x(x, t)
)

dx, (15)

where ε is and arbitrary positive constant. As η(x, t) ∈ W 1
2 (QT ) then from (15) it follows that

1
2
H(l)η2(l, 0) ≤

∫ l

0

(
1
4
η2

x(x, 0) + a(ρ)η2(x, 0)
)

dx (16)

and
∣∣∣∣∣
∫ b

0

η(l, t)
∫ l

0

Hxηt dx dt

∣∣∣∣∣ ≤ H1

∫ b

0

∫ l

0

(βη2
x(x, t) + a(β)η2(x, t)) dx dt +

1
4

∫

Qb

η2
t dx dt, (17)

Appling the estimates (14)-(16) to (13) we obtain

1
2

∫

Qb

η2
t dx dt +

1
4

∫ l

0

η2
x(x, 0) dx ≤ (c2

1 + H0a(β))
∫

Qb

η2 dx dt++ 1
2H(l)a(ρ)

∫ l

0
η2(x, 0) dx +

∫
Qb

η2
x(x, t) dx dt.

It easy to see that η2(x, t) ≤ b

∫ b

0

η2
t (x, τ) dτ,

∫ l

0

η2(x, 0) dx ≤ b

∫

Qb

η2
t (x, t) dx dt and

∫

Qb

η2(x, t) dx dt ≤ b2

∫

Qb

η2
t (x, t) dx dt. Therefore,

∫

Qb

η2
t (x, t) dx dt +

∫ l

0

η2
x(x, 0) dx ≤ 4

∫

Qb

η2
x(x, t) dx dt, (18)

where b = min{1/
√

8c2, 1/8c2}, c2 = min{c2
1 + H0a(β), 1

2H(l)a(ρ)}.
Introduce the function

∫ t

0

u(x, τ) dτ = y(x, t). For t ∈ [0, b] η(x, t) = y(x, t)− y(x, b). And hence,

∫ l

0

y2
x(x, b) dx ≤ 4

∫

Qb

(yx(x, t)− yx(x, b))2 dx dt ≤ 8
∫

Qb

(y2
x(x, t) + y2

x(x, b)) dx dt =

= 8
∫

Qb

y2
x(x, t) dx dt + 8b

∫ l

0

y2
x(x, b) dx dt.

For b ≤ 1/16 we obtain
∫ l

0

y2
x(x, b) dx ≤ 16

∫

Qb

y2
x(x, t) dx dt. (19)
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The inequality (19) is valid for all b ∈ [0, b1], where b1 is defined as b1 = min{1/
√

8c2, 1/8c2, 1/16}. We write

(19) in the form
d

db

∫ b

0

∫ l

0

y2
x(x, t) dx dt ≤ 16

∫ b

0

∫ l

0

y2
x(x, t) dx dt.

Since y(x, 0) = 0, so yx(x, 0) = 0. Therefore, applying Gronwall’s lemma we obtain
∫

Qb

y2
x(x, t) dx dt = 0. And

hence, yx(x, b) ≡ 0 for all b ∈ [0, b1]. It follows immediately that ηx(x, t) = yx(x, t)− yx(x, b) ≡ 0 for t ∈ [0, b1].
By (18) we conclude that ηt(x, t) = u(x, t) = 0 for t ∈ [0, b1]. We repeat these arguments for t ∈ [b1, 2b1] and

then continue this procedure. It follows that u(x, t) = 0 for all t ∈ [0, T ]. Therefore there exists at most one solution
of (1)- (3), (6).

2. Existence. Let {ψk(x)} ∈ C1[0, l] be a basis in W 1
2 (0, l) and

(ψi, ψj)L2(0,l) =
{

1, i = j,
0, i 6= j.

We define the approximations

uN (x, t) =
N∑

k=1

cN
k (t)ψk(x), (20)

where cN
k (t) are solutions of the Cauchy problem

∫ l

0

uN
t (x, t)ψm(x) dx +

∫ l

0

uN
x (x, t)ψ′m(x) dx−

∫ l

0

c(t)uN (x, t)ψm(x) dx =

=
∫ l

0

f(x, t)ψm(x) dx +

(∫ l

0

H(x)uN
x (x, t) dx + F (t)

)
ψm(l), (21)

cN
m(0) = (ϕ,ψm), m = 1, N. (22)

We write the Cauchy problem (21) – (22) such that

d

dt
cN
m(t) +

N∑

k=1

Ak,m(t)cN
k (t) =

∫ l

0

f(x, t)ψm(x) dx− F (t)ψm(l), m = 1, N (23)

where Ak,m(t) =
∫ l

0

ψ′k(x)ψ′m(x) dx− c(t)− ψm(l)
∫ l

0

H(x)ψ′k(x) dx.

Under the hypothesis of the theorem coefficients Ak,m(t) are bounded and

(
−F (t)ψk(l) +

∫ l

0

fψk dx

)
∈

L2[0, T ]. Thus the Cauchy problem has a unique solution cN
k ∈ C1(0, T ) for every N and all approximations

(20) are defined.
Next, we need a priori estimates to pass to the limit as N →∞.

Multiplying (21) by ψk(x) , summing from k = 0 to k = N and integrating with respect to t from 0 to τ < T ,
we obtain

1
2

∫ l

0

(uN )2 dx +
∫

Qτ

(uN
x )2 dxdt =

1
2

∫ l

0

(uN (x, 0))2 dx +
∫

Qτ

c(uN )2 dxdt+

+
∫

Qτ

fuN dxdt +
∫

Qτ

H(x)uN
x (x, t)uN (l, t) dxdt +

∫ τ

0

F (t)uN (l, t) dt. (24)

Aplying ε - inequality and (15) to the terms of the right-hand side, we have

1
2

∫ l

0

(uN )2 dx +
1
2

∫

Qτ

(uN
x )2 dxdt ≤ 1

2
(1 + 2c1 + a(ε) + 3H0a(ε1))

∫

Qτ

(uN )2 dxdt+

+
1
2

∫ l

0

(uN )2(x, 0) dx +
1
2

∫

Qτ

f2 dxdt +
1
2

∫ τ

0

F 2 dxdt, (25)
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where H0 = T

∫ l

0

H2(x) dx and ε > 0 is an arbitrary constant.

Denote m = 1+2c1 +a(ε)+3H0a(ε1), G(τ) =
∫ l

0

(uN )2(x, 0) dx+
∫

Qτ

f2 dxdt+
∫ τ

0

F 2 dt and obtain from (25)

that
∫ l

0

(uN )2(x, τ) dx ≤ m

∫ τ

0

∫ l

0

(uN )2 dxdt + G(τ). (26)

By Gronwall’s lemma, we conclude

∫ τ

0

∫ l

0

(uN )2 dxdt ≤ G(τ)
m

(emτ − 1). (27)

From (25) and (27) it follows that
∫

QT

(uN
x )2 dxdt ≤ G(T )emT . (28)

And hence,

‖uN‖W 1,0
2 (QT ) ≤ M, (29)

where M > 0 and does not depend on N .
Note that W 1,0

2 (QT ) is Hilbert space. Therefore, because of (29), we can extract from {uN} a subsequence that
convergence weakly in W 1,0

2 (QT ) to some function u(x, t) ∈ W 1,0
2 (QT ). We need only to show that this limit

function is a required generalized solution.
To show that (9) is valid we multiply (21) by absolutely continuous functions dm(t), dm(T ) = 0 and d′m(t) ∈

L2(0, T ), take the sum from m = 1 to m = N and integrate with respect to t from 0 to T . We obtain the following
equality

∫

QT

(−uNkΦN
t + uNk

x ΦN
x − cuNkΦN ) dx dt =

∫

QT

fΦN dxdt +
∫ l

0

ϕ(x)ΦN (x, 0) dx +
∫ T

0

F (t)ΦN (l, t) dt+

+
∫ T

0

∫ l

0

H(x)uNk
x (x, t) dxΦN (l, t) dt, (30)

where ΦN (x, t) =
N∑

m=1

dm(t)ψm(x).

Taking into account the convergence proved above one can pass to the limit in (30) as k → ∞ for any fixed
ΦN (x, t) and obtain

∫

QT

(−uΦN
t + uxΦN

x − cuΦN ) dxdt =
∫ l

0

ϕ(x)ΦN (x, 0)dx +
∫

QT

fΦN dxdt+

+
∫ T

0

(∫ l

0

H(x)ux(x, t) dx + F (t)

)
ΦN (l, t) dt. (31)

Note that the set of functions {ΦN} ⊂
∞⋃

N=1

ΦN is dense in W 1
2 (QT ) [9]. Let η(x, t) be the limit function of {ΦN}

in W 1
2 (QT ).

Consider the last term in the right-hand side of (31). We shall show that

lim
N→∞

∫ T

0

(∫ l

0

H(x)ux(x, t) dx + F (t)

)
ΦN (l, t) dt =

∫ T

0

(∫ l

0

H(x)ux(x, t) dx + F (t)

)
η(l, t) dt. (32)
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Denote
∫ l

0

H(x)ux(x, t) dx + F (t) = S(t). Then

∣∣∣∣∣
∫ T

0

S(t)
(
ΦN (l, t)− η(l, t)

)
dt

∣∣∣∣∣ ≤
∫ T

0

|S(t)|
∣∣(ΦN (l, t)− η(l, t))

∣∣ dt (33)

and |S(t)| =
∣∣∣∣∣
∫ l

0

H(x)ux(x, t) dx + F (t)

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ l

0

H(x)ux(x, t) dx

∣∣∣∣∣ + |F (t)|.

As the estimate (28) implies that
∫ l

0

u2
x dx ≤ (G′(T ) + mG(T )) emT , so

(∫ l

0

H(x)ux(x, t) dx

)2

≤
∫ l

0

H2(x) dx

∫ l

0

u2
x(x, t) dx ≤ H0 (G′(T ) + mG(T )) emT . (34)

Taking the square root of both sides in (34) we get that
∣∣∣∣∣
∫ l

0

H(x)ux(x, t) dx

∣∣∣∣∣ ≤ [H0 (G′(T ) + mG(T ))]1/2
emT/2.

Moreover, |F (t)| ≤ |E′|+ c1|E|+ |f1|
|K(l)| , |f1(t)| =

∣∣∣∣∣
∫ l

0

Kf dx

∣∣∣∣∣ . And hence, |S(t)| ≤ A, where A depends on

l, T, K, c, f, E.

Now consider the term
∫ T

0

∣∣(ΦN (l, t)− η(l, t))
∣∣ dt. It is easy to see that

(∫ T

0

∣∣(ΦN (l, t)− η(l, t))
∣∣ dt

)2

≤ C2

(∫ T

0

∫ l

0

∣∣(ΦN (x, t)− η(x, t))x

∣∣ dx dt +
∫ T

0

∫ l

0

∣∣(ΦN (x, t)− η(x, t))
∣∣ dx dt

)2

.

This inequality implies that

(∫ T

0

∣∣(ΦN (l, t)− η(l, t))
∣∣ dt

)2

≤ 2lT

∫ T

0

∫ l

0

((
(ΦN − η)x

)2
+

(
(ΦN − η)

)2
)

dx dt → 0 as N →∞.

Therefore (32) holds and the limit relation is fulfilled for every function η ∈ W 1
2 (QT ), and hence, u is the

required solution of the problem (1)- (3), (6).

4. Conclusion

In this work we apply one of the possible methods of analysis of nonlocal problems with integral conditions of
the first kind. Nonlocal problems with these type conditions are of considerable interest as the operator equation
that corresponds the first type condition is ill-posed. We have shown that with certain conditions on a kernal and
initial data the problem can be equivalent to the nonlocal problem with the second type integral condition. For
the equivalent problem we introduce the notion of a generalized solution and prove its existence and uniqueness
applying method of apriori estimates and Galerkin method.
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