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Abstract

This paper focuses on mathematical control of infectious bursal disease in chicks. The model boundedness and the control measures to reduce
the spreads of the disease have well analytically examined. The theory of Pontryagin’s maximum principle used in analysing necessary
conditions to combat the disease. Numerically, forward backward sweep method and fourth-order Runge-Kutta scheme using the forward
solution of the state equations was applied. The outcome indicates that the combination of vaccination of chicks and environmental sanitation
as the most cost-effectiveness strategy to combat the spread of IBD with limited resources. Therefore, IBD can be controlled if the poultry
farmers will effectively apply vaccination of chicks and environmental sanitation.
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1. Introduction

Infection bursal disease is a highly transmissible bird disease that mostly affects chickens; particularly young chickens usually of age between
three to six weeks [20].The Infection bursal disease (IBD) also known as ’Gumboro disease’ due to the geographical location of the first
recorded outbreak in 1961, which occurred in and around Gumboro, Delaware, USA [20].The disease is caused by infection bursal disease
virus (IBDV), the virus belongs to the genus avibirnavirus of the family birnaviridae, indeed the virus was also identified in the Middle
East, Southern and western Africa, India, the Far East, and Australia from 1966 to 1974 [22], [23].Moreover the infectious bursal disease is
currently a global problem as about 95% of the 65 countries that affected by this disease [21]. The IBD viral also occurs in other lymphoid
structures including the spleen, thymus, harderian gland, and ceca tonsil [24].
The incubation period for IBDV ranges from 2-3 days, and the infections before 3 weeks of age are usually subclinical (no detectable
symptoms) [25].The severity of the disease may vary with age and breed of chickens, the virulence of the strain, and degree of passive
immunity, Moreover the susceptible chicken can be infected through direct contact, feces, contaminated environment and is possibly also
carried in the dust. Bird to bird is the most recognized transmission way of the disease through contact with contaminated drinking water.
The virus can also transferred from the house on fomites and rodents [26], apart from that lesser mealworm (Alphitobus diapering) has been
shown to carry the virus and transmit mechanically among the farms by people, equipment, and vehicles [20]. Furthermore, it shows that
there is no vertical transmission from parents direct off spring.
This disease is characterized by the following symptoms; nasal discharge, sneezing, diarrhoea with urates in mucus, in appetence and
prostrated (extremely weakness), feathers are raffled, which leads to a drop in egg production, decreased feed and water consumption [25].
Although IBDV represents one of the most severe poultry diseases and is responsible for marked economic losses, few studies of IBDV have
been done on chickens in Tanzania, which hinders the implementation of effective disease [28].
According to [27] IBDV in Tanzania was found in the Eastern Zone ( Dar-es Salaam and Kibaha) in 1988 that was first affected broiler flocks
disease. Further more in 2007, it was found that the pathotypes exist in Tanzania are African VV-IBDV (VV1 &VV2) and European/Asian
VV-IBDVs [19]. Since IBD is a viral disease there is no treatment, the only way to reduce the impact of the disease is to keep the flock
of chicken free of this disease through effective vaccination. The governments through different means have tried to emphasize on the
vaccination but still the disease has continued causing economic depression for both government and individual who are invested in chicken
especially in the village areas for those people depend on poultry. Due to important of IBD constraints for commercial and local chicken
production in Tanzania [29], this study aims to develop a mathematical model as an attempt of controlling the spread of the disease that will
help the poultry farm to plan for vaccination programs to fight against the outbreak of IBDV disease.

Copyright © 2018 Author. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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2. Model Formulation

In this section we formulate a deterministic compartmental mathematical model to describe the transmission dynamics of IBD. We assume that
the chicks population is homogeneously mixing and reflects increasing dynamics. We have chick population divided into four epidemiological
classes and vector population in the environment divided into two epidemiological classes. For the chicks population we have the susceptible
chicks who may get the disease SC, the chicks who are exposed to the disease EC, the chicks who are infectious and may transfer the disease
to others IC and the chicks who are vaccinated VC. In the environment there are various vectors who may carry the disease and transmit to
chicks so we have susceptible vectors in the environment TS and the infectious vectors in the environment TI . All new chicks Π and vectors
Λ who enters the population are susceptible to the disease. The chicks and vector populations may decrease naturally by death rates µ and ψ

respectively.

(i) The proportion of susceptible chicks θSC who receive first dose of active vaccine may progress to vaccinated chicks VC . These
vaccinated chicks will stay immune to the disease until they receive the second dose of inactive vaccine. The proportion of vaccinated
chicken (1−θ)SC who may not receive second dose of vaccine may again become susceptible to the disease after the waning of first
dose at rate α .

(i) When the proportion of susceptible chicks λSC come into contact with infectious chicks IC at rate β1 or the infectious vectors in the
environment TI at rate β2 they may progress to be exposed chicks EC. The force of infection λ = β1IC +β2TI .

(i) After some time the proportion of exposed chicks σEC may progress to become infectious chicks IC who may infect other chicks or a
proportion of susceptible vectors in the environment λTS.

Table 1: Ranges of parameters used in the model

Symbol Description Estimated
range

Π The rate of increase of chicks 0−1
λ The force of infection 0.2−0.8
β1 The rate of infectious chicks to transmit the disease 0.4−0.9
β2 The rate of infectious vectors to transmit the disease 0.1−0.8
θ Proportion of vaccinated chicks 0−1
α The rate of waning of first dose of vaccine 0.5−1
µ Natural death rate of chicks 0−1
σ The rate of progression from latent to infectious 0.5−1
δ Death rate of chicks due to disease 0−1
Λ The rate of increase of susceptible vectors 0−1
ψ Natural death rate of vectors 0−1

Figure 1: Compartmental Diagram IBD model.
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Basing on these assumptions and compartmental model Figure 1 the following system of the model equations generated:

dSC

dt
= Π−λSC −θSC +(1−θ)αVC −µSC

dEC

dt
= λSC −σEC −µEC

dIC
dt

= σEC − (µ +δ )IC

dVC

dt
= θSC − (1−θ)αVC −µVC

dTS

dt
= Λ−λTS −ψTS

dTI

dt
= λTS −ψTI

(1)

We examine the boundedness of the model (1) using the following lemma.
Lemma:
All solutions of the system (1) which starts in R6

+ are uniformly bounded.
Proof:
Let

N(t) = P(SC,EC, IC,VC)+Q(TS,TI) (2)

Differentiating and solving (2) we get,

N(t) =
Π

µ
(1− e−µt)+P(0)e−µt +

Λ

ψ
(1− e−ψt)+Q(0)e−ψt (3)

Then in the equation (3) as t → ∞ we consequently have,

0 ≤ N(t)≤ Πψ +Λµ

µψ
(4)

Implying that all solutions of the system (1) are uniformly bounded in the interior of R6
+, then

r =
{
(SC,EC, IC,VC,TS,TI ∈ R6

+ : N ≤ Πψ +Λµ

µψ
+ ε)

}
for any ε > 0 is bounded.

3. Application of Optimal Control to the Infectiology Bursal Disease (IBD) Model

Controlling chicks from IBD may contribute to gross economy for nation or individual bases of the farmers. The time-dependent control to
the model (1) for the aim of minimizing the spread of the disease in local or indigineous chicks basing on the Tanzanian context is analysed.
In formulating the control strategies the following assumptions considered as the guideline.
It is assumed that infected chickens may be controlled through treatment and denoted as u3(t) whereas susceptible populations are protected
through vaccination u1(t). Also, the disease can be controlled through sanitation which is denoted by u2(t). Furthermore, it is assumed
that a fraction of susceptible population being infectious is 1−u1(t) while the remaining population turns to a class of susceptible. The
incorporated control time is bounded by t ∈ [0,T ] where T is the final time of the intervention program. The vaccination control will be
evaluated at its optimal level when u1 = 1 and at the minimum level when u1 = 0. The control associated with chickens environmental
sanitation attain its maximum level whenever u2 = 1 and the optimal level of treatment achieved when u2 = 1. Otherwise, it is assumed that
intervention is at a low or intermediate level.
Hence, incorporating these assumptions in the model (1) , we generate the following model equations

dSC

dt
= Π− (1−u1)λSC −θSC +(1−θ)αVC −µSC

dEC

dt
= (1−u1)λSC −σEC −µEC

dIC
dt

= σEC − (µ +δ +u2)IC

dVC

dt
= θSC − (1−θ)αVC −µVC

dTS

dt
= Λ− (1−u3)λTS −ψTS

dTI

dt
= (1−u3)λTS −ψTI

(5)

It is assumed that the control strategies that are chicken vaccination, treatment of infected chicken and chicken environmental sanitation has
maximum limitations in a given period of time. The limitations are evaluated under a Lebesgue measurable control variable presented as

u = {u = (u1,u2,u3),0 ≤ uimax, i = 1,2,3}.
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This leads to the minimization of the number of the infected chicken population while minimizing the associated cost of interventions u1,u2
and u3 and in a specified period of time. Thus, the optimal control problem is set to minimize the objective functional presented as

J(u) =
∫ T

0

(
A1IC +A2TI +

1
2

B1u2
1 +

1
2

B2u2
2 +

1
2

B3u2
3

)
dt (6)

where Ai > 0 represents the weight of control of infected chicken and its environment, Bi > 0 represents the relative weight of control cost

and benefit of the control while
1
2

B1u2
1 is the minimization cost of vaccination control,

1
2

B2u2
2 is the minimization cost of environment

sanitation and
1
2

B3u2
3 is the minimization cost of treatment control. The aim is to find the pair of optimal control u∗(t) = (u∗1(t),u

∗
2(t),u

∗
3(t))

such that

J(u∗) = min
U

J(u1,u2,u3) (7)

The basic setup of the optimal control problem is to check the existence and uniqueness of the optimal controls and to characterize them [30].
The Pontryagin maximum principle converts the control set U into a problem of minimizing the Hamiltonian H, point wise with respect to
u1,u2,u3. The particular study applies the optimal controls that rely on Pontryagin’s maximum principle as presented by [12] and applied
by many other authors. To apply this theory, we convert the optimal control problem (5) and objective functional (6) into a problem of
minimizing point-wise a Hamiltonian (H), with respect to u(t). Hamiltonian equation formed

H =A1IC +A2TI +
1
2

B1u2
1 +

1
2

B2u2
2 +

1
2

B3u2
3

+ τ1(Π− (1−u1)λSC −θSC +(1−θ)αVC −µSC)

+ τ2((1−u1)λSC −σEC −µEC)

+ τ3(σEC − (µ +δ +u2)IC)

+ τ4(θSC − (1−θ)αVC −µVC)

+ τ5(Λ− (1−u3)λTS −ψTS)

+ τ6((1−u3)λTS −ψTI)

(8)

where τi, i = 1,2,3,4,5,6 are the co-state variables associated by SC, EC, IC, VC, TS and TI .

3.1. Existence of an optimal control

The existence of an optimal control for the state system is checked by using the results obtained by Fleming and Rishel [13] through the
following theorem.

Theorem 1. Let the optimal control problem that minimizes the objective functional J be defined over a time horizon [0,T ]. If the objective
function is defined on a set of bounded and Lebesgue measurable control u and subjected to the dynamic constraint of some state equations,
then there exists an optimal solution u∗ such that J(u∗) = min

U
u provided that the following conditions hold:

(i) The control set is convex and closed.

(ii) The right-hand side of the state system is bounded by a linear function in the state and control variable.

(iii) The state variables used in the system (5), together with their control variables are not empty.

(iv) There exist some constants x1,x2 > 0 and y > 1, for which the integrand of the objective function is convex and satisfies the boundary
condition:

J(u) = x1

( n

∑
i=1

|ui|2
) y

2 − x2. (9)

The reader is therefore advised to go through the proof of the theorem 1 from the book of [13] entitled Deterministic and Stochastic optimal
control, pages 62, 69 and [12]. Conversely, for the analysis of particular paper, the conditions that guarantees the existence of an optimal
solution for the objective functional are verified.
Consider an optimal control problem described by Equation (9), which is subject to the state constraint given by system (5).

1. By definition, the control variables u1,u2,u3 are convex and closed.
2. Clearly, the solutions of the state system are bounded since the state functions are linear with respect to the control variables. Hence,

the second condition is satisfied.
3. It is obvious that the state and our corresponding set of control variables U in the system (5) are presumed bounded and not empty.
4. Since the state equations are bounded, we can find some positive constants a1,a2 > 0 and b > 1, for which the integrand of the

objective functional is convex and satisfies

A1Ic +A2T1 +
1
2

B1u2
1 +

1
2

B2u2
2 +

1
2

B3u2
3 ≥ a1

( 3

∑
i=1

|ui|2
) b

2 −a2. (10)

Therefore, it worth to conclude that there exists an optimal solution which lies between 0 and 1 that minimizes the objective functional
articulated in (6).
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3.2. Necessary Optimality Conditions

The optimality condition of the solution of the model, is established by the following theorem.

Theorem 2. Let ui be the set of optimal control and Xi be the corresponding solution of the set of equations that minimizes the objective
function J over the set of controls, then there exist λi adjoint variables such that optimality system is

dλX (t)
dt

=
−∂H
dX

λX (T ) = 0

∂H
∂ui

= 0.

By applying Pontryagin’s maximum principle, the following adjoint system obtained with corresponding optimal solutions of the state
equations:

∂H
∂SC

=−τ1 (−(1−u1)(IC β1 +TI β2)−θ −µ)− τ2 (1−u1)(IC β1 +TI β2)− τ4 θ

∂H
∂EC

=−τ2 (−σ −µ)− τ3 σ

∂H
∂ IC

=−A1 + τ1 (1−u1)β1 SC − τ2 (1−u1)β1 SC − τ3 (−µ −δ −u2)

+ τ5 (1−u3)β1 TS − τ6 (1−u3)β1 TS

∂H
∂VC

=−τ1 (1−θ)α − τ4 (−(1−θ)α −µ)

∂H
∂TS

=−τ5 (−(1−u3)(IC β1 +TI β2)−ψ)− τ6 (1−u3)(IC β1 +TI β2)

∂H
∂TI

=−A2 + τ1 (1−u1)β2 SC − τ2 (1−u1)β2 SC + τ5 (1−u3)β2 TS

− τ6 ((1−u3)β2 TS −ψ)

(11)

Through Pontryagin’s maximum principle, the optimality system for the optimal control problem obtained. Furthermore, the optimality
system involves the state equations of the system (5) including initial conditions Sc ≥ 0,Ec ≥ 0, Ic ≥ 0,Vc ≥ 0,Ts ≥ 0,TI ≥ 0, together with
its adjoint (co-state) equations (8). Consequently, the adjoint system bounded by final values or transversality conditions as

τ1Sc(T ) = τ2Ec(T ) = τ3Ic(T ) = τ4Vc(T ) = τ5Ts(T ) = τ6TI(T ) = 0.

3.3. Characterization of the Optimal Control

The optimal solution for the Hamiltonian (H) is evaluated through the partial derivative of the Hamiltonian (H) with respect to the control

(u1,u2,u3). The optimal solution is obtained by solving
∂H
∂ui

= 0 for i = 1,2,3. Therefore the solution is characterized as

u∗1 =max
{

0,min
{

1,
SC(ICβ1τ1 − ICβ1τ2 +TIβ2τ1 −TIβ2τ2)

B1

}}
u∗2 =max

{
0,min

{
1,

τ3IC
B2

}}
u∗3 =max

{
0,min

{
1,

−TS(ICβ1)τ5 − ICβ1τ6 +TIβ2τ5 −TIβ2τ6

B3

}} (12)

3.4. Uniqueness of the Optimal Control Solution

In this subsection, the uniqueness of the optimal control solution is evaluated following the method applied by [14]. Thus combining system
(11) together with the optimality system results to;

sh = p1(t,sh,eh, ih,sv,ev, ih)
eh = p2(t,sh,eh, ih,sv,ev, ih)
ih = p3(t,sh,eh, ih,sv,ev, ih)
rh = p4(t,sh,eh, ih,sv,ev, ih)
sv = p5(t,sh,eh, ih,sv,ev, ih)
ev = p6(t,sh,eh, ih,sv,ev, ih)
iv = p7(t,sh,eh, ih,sv,ev, ih)
sh(0),eh(0), ih(0),rh(0),sv(0),ev(0), iv(0),
sh(T ),eh(T ), ih(T ),rh(T ),sv(T ),ev(T ), iv(T ) and t is fixed.

(13)
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where sh ∈ Rni,eh ∈ Rni, ih ∈ Rni,rh ∈ Rni,sv ∈ Rni,ev ∈ Rni, iv ∈ Rni for i = 1,2,3,4,5,6,7 as dimension of vector space Rni and

q1 = R×Rn1 ×Rn2 ×Rn3 ×Rn4 ×Rn5 ×Rn6 ×Rn7 −→ Rn1

q2 = R×Rn1 ×Rn2 ×Rn3 ×Rn4 ×Rn5 ×Rn6 ×Rn7 −→ Rn2

q3 = R×Rn1 ×Rn2 ×Rn3 ×Rn4 ×Rn5 ×Rn6 ×Rn7 −→ Rn3

q4 = R×Rn1 ×Rn2 ×Rn3 ×Rn4 ×Rn5 ×Rn6 ×Rn7 −→ Rn4

q5 = R×Rn1 ×Rn2 ×Rn3 ×Rn4 ×Rn5 ×Rn6 ×Rn7 −→ Rn5

q6 = R×Rn1 ×Rn2 ×Rn3 ×Rn4 ×Rn5 ×Rn6 ×Rn7 −→ Rn6

q7 = R×Rn1 ×Rn2 ×Rn3 ×Rn4 ×Rn5 ×Rn6 ×Rn7 −→ Rn7

(14)

are continuous.

Theorem 3. Given that q1,q2,q3,q4,q5,q6,q7 are bounded, satisfying Lipschitz condition in relation to sh,eh, ih,sv,ev, iv with constant
L > 0 then the solution of (13) are unique if the final time, T is sufficiently small.

Proof. Assume that the system (13) has two solutions; sh1(t),eh1(t), ih1(t),sv1(t),ev1(t), iv1(t) and sh2(t),eh2(t), ih2(t),sv2(t),ev2(t), iv2(t).
Using the approach presented in [15] and by applying Lipschitz condition for q1 we obtain

∥sh1(t)− sh2(t)∥ ≤
∫ T

0
L(∥sh1(m)− sh2(m)∥+∥eh1(m)− eh2(m)∥+∥ih1(m)− ih2(m)∥

+∥rh1(m)− rh2(m)∥+∥sv1(m)− sv2(m)∥+∥ev1(m)− ev2(m)∥+∥iv1(m)− iv2(m)∥)dm

Applying Lipschitz condition for q2 we get

∥eh1(t)− eh2(t)∥ ≤
∫ T

0
L(∥sh1(m)− sh2(m)∥+∥eh1(m)− eh2(m)∥+∥ih1(m)− ih2(m)∥

+∥rh1(m)− rh2(m)∥+∥sv1(m)− sv2(m)∥+∥ev1(m)− ev2(m)∥+∥iv1(m)− iv2(m)∥)dm

Similarly applying Lipschitz condition for q3 −q7 we get

∥ih1(t)− ih2(t)∥ ≤
∫ T

0
L(∥sh1(m)− sh2(m)∥+∥eh1(m)− eh2(m)∥+∥ih1(m)− ih2(m)∥

+∥rh1(m)− rh2(m)∥+∥sv1(m)− sv2(m)∥+∥ev1(m)− ev2(m)∥+∥iv1(m)− iv2(m)∥)dm

∥rh1(t)− rh2(t)∥ ≤
∫ T

0
L(∥sh1(m)− sh2(m)∥+∥eh1(m)− eh2(m)∥+∥ih1(m)− ih2(m)∥

+∥rh1(m)− rh2(m)∥+∥sv1(m)− sv2(m)∥+∥ev1(m)− ev2(m)∥+∥iv1(m)− iv2(m)∥)dm

∥sv1(t)− sv2(t)∥ ≤
∫ T

0
L(∥sh1(m)− sh2(m)∥+∥eh1(m)− eh2(m)∥+∥ih1(m)− ih2(m)∥

+∥rh1(m)− rh2(m)∥+∥sv1(m)− sv2(m)∥+∥ev1(m)− ev2(m)∥+∥iv1(m)− iv2(m)∥)dm

∥ev1(t)− ev2(t)∥ ≤
∫ T

0
L(∥sh1(m)− sh2(m)∥+∥eh1(m)− eh2(m)∥+∥ih1(m)− ih2(m)∥

+∥rh1(m)− rh2(m)∥+∥sv1(m)− sv2(m)∥+∥ev1(m)− ev2(m)∥+∥iv1(m)− iv2(m)∥)dm

∥iv1(t)− iv2(t)∥ ≤
∫ T

0
L(∥sh1(m)− sh2(m)∥+∥eh1(m)− eh2(m)∥+∥ih1(m)− ih2(m)∥

+∥rh1(m)− rh2(m)∥+∥sv1(m)− sv2(m)∥+∥ev1(m)− ev2(m)∥+∥iv1(m)− iv2(m)∥)dm

By adding the above equations, we have

∥sh1(t)− sh2(t)∥+∥eh1(t)− eh2(t)∥+∥ih1(t)− ih2(t)∥+∥rh1(t)− rh2(t)∥+∥sv1(t)− sv2(t)∥

+∥ev1(t)− ev2(t)∥+∥iv1(t)− iv2(t)∥ ≤
∫ T

0
L(∥sh1(m)− sh2(m)∥+∥eh1(m)− eh2(m)∥+∥ih1(m)− ih2(m)∥

+∥rh1(m)− rh2(m)∥+∥sv1(m)− sv2(m)∥+∥ev1(m)− ev2(m)∥+∥iv1(m)− iv2(m)∥)dm
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According to the mean value theorem, ∃c for 0 ≤ c ≤ T such that

∥sh1(t)− sh2(t)∥+∥eh1(t)− eh2(t)∥+∥ih1(t)− ih2(t)∥+∥rh1(t)− rh2(t)∥+∥sv1(t)− sv2(t)∥

+∥ev1(t)− ev2(t)∥+∥iv1(t)− iv2(t)∥ ≤ LT (∥sh1(c)− sh2(c)∥+∥eh1(c)− eh2(c)∥+∥ih1(c)− ih2(c)∥

+∥rh1(c)− rh2(c)∥+∥sv1(c)− sv2(c)∥+∥ev1(c)− ev2(c)∥+∥iv1(c)− iv2(c)∥)

For all t ∈ [0,T ]. The proof will be complete if T is small enough such that t < 1 where T denote the final time.

4. Numerical Results

The numerical effects of optimal control strategies are analysed and discussed. The solution of the optimal control problem was obtained by
solving the optimality system of state and adjoint systems through forward-backwards sweep method. The adjoint systems were solved by
fourth-order Runge-Kutta scheme using the forward solution of the state equations. The optimality condition is satisfied through the convex
update of the previous control values
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Figure 2: The effects of vaccination of chicks and removal of infected chicks

Strategy A: Combination of vaccination of chicks and removal of infected chicks. Figure 2(a) and 2(b) shows the positive effect of vaccination
of chicks and removal of infected chicks when u1 and u2 are applied to the system and u3 is set to zero. Figure 2(a) shows that, when the
control is applied, the susceptible chicks increases while infected chicks decreases. The significant difference is also observed in susceptible
and infected vector, when the control is applied, infected vector decreases as well as susceptible vector decreases as shown in figure 2(b).
This result shows that the optimal control measure is effective in chicks and vectorsvaccination of chicks and environmental sanitation.
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Figure 3: The effects of vaccination of chicks and environmental sanitation

Strategy B: Combination of vaccination of chicks and environmental sanitation. We can observe from Figure 3(a) and 3(b) when u1 and u3
are applied to the system and u2 is set to zero. Figure 3(a) shows the number of susceptible chicks increase while infected chicks decrease as
a result, reducing the transmission of the virus to other chicks. Figure 3(b) shows that, when the control is applied, the infected vector in the
environment decreases.
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Figure 4: The effects of removing infected chicks and environmental sanitation

Strategy C: Combination of removing infected chicks and environmental sanitation. The results show that removing infected chicks and
environmental sanitation in the system will reduce the spread of the disease. We can observe this from Figure 4(a) where the infected chicks
decreases because of removing the infected chicks; and infected vector decreases by employing environmental sanitation to the system.
Moreover, the combination of strategies when u2 and u3 are applied to the system and u1 is set to zero give good results to optimize the
objective function J.
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Figure 5: The effects of vaccination of chicks, removing infected chicks and environmental sanitation

Strategy D: Combination of vaccination of chicks, removing infected chicks and environmental sanitation. The results show that the use of
vaccination of chicks, removing infected chicks and environmental sanitation in the system will reduce the spread of the disease. We can
observe this tendency from Figure 5(a), which displays that the infected chicks decreases by intensifying the removal of the infected chicks
and infected vector decreases by strengthening environmental sanitation to the system. Moreover, Figure 5(b) shows that when the control is
applied, the infected vector decreases. The combination of strategies u1, u2 and u3 give the best results to optimize the objective function J.

5. Cost-effective Analysis

The cost effectiveness analysis helps to show the economic benefit of each control measure. It is used to make comparisons between the
relative costs and outcomes of different strategies. In making decision on which intervention to implement in limited resources, the economic
evaluation of IBD is carried out to find the most cost effective strategy. In this study, the cost effectiveness is thoroughly analysed using
incremental cost effectiveness ratio (ICER) which compares the differences between the costs and health outcomes of the two competing
intervention strategies. Each intervention is compared with the next less effective alternative [12]. The averted plant is computed by finding
the difference between the total number of plants without control and the total number of plants with control. The total control cost is
evaluated as:

C(u) = min
u1,u2,u3

=
∫ 3

0

(
1
2

B1u2
1 +

1
2

B2u2
2 +

1
2

B3u2
3

)
dt (15)

The total control costs B1u2
1, B2u2

2 and B3u2
3 are relative cost weight for each control measure. The numerical output for the control strategies

are ranked in increasing order of effectiveness in form of infection averted as shown in table 2

Table 2: Control strategies in order of increasing averted

Strategy Infections Control Total
averted cost cost

C 44.4801 29.996 18639
A 71.5448 29.9926 16575
D 71.731 44.9919 18489
B 71.7801 29.9975 20338

ICER =
Difference in cost in strategy i and j

Difference infected in strategy i and j
(16)

ICER(C) =
29.996

44.4801
= 0.674368987, ICER(A) =

29.9926−29.996
71.5448−44.4801

=−0.000125625

The negative ICER for strategy A indicates that strategy C is strongly dominated and less effective than strategy A. Therefore, strategy C is
excluded from the set of alternatives. We exclude C and compare strategy A and D, and ICER recalculated as follows
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Table 3: Total infection averted, total cost and ICER

Strategy Infections Control ICER
averted cost

A 71.5448 29.9926 0.419214255
D 71.731 44.9919 80.55477981

The comparison between strategies A and D indicate that strategy D is strongly dominated and is more costly than strategy A as ICER(A)<
ICER(D) then strategy D is excluded in set of alternative hence A and B are compared.

Table 4: Total infection averted, total cost and ICER

Strategy Infections Control ICER
averted cost

A 71.5448 29.9926 0.419214255
B 71.7801 29.9975 0.020824479

Comparison between strategies A and B shows that strategy A is more costly and less effective than strategy B as ICER(B) < ICER(A).
Therefore strategy A is excluded from the set of alternatives and strategy B is cost effective. Now, basing on these results we therefore
conclude that strategy B (vaccination of chicks and environmental sanitation) is most cost effective of all strategies for IBD.

6. Conclusion

In this paper, deterministic model for the transmission of IBD was formulated and three control strategies have been investigated. The cost
effectiveness analysis was also a focal point of concentration to combat the disease in chicks. The Pontryagin’s maximum principle was
used in deriving and analysing the conditions for optimal control of IBD with control strategies such as vaccination of chicks, removal of
infected chicks and environmental sanitation. The numerical analysis shows that each strategy has potential to control the transmission of
the disease.Whenever control is applied, numerical results show that susceptible chicks increases while infected chicks decreases. Cost
effectiveness analysis indicates that the use of vaccination of chicks and environmental sanitation is the cost effective optimal control strategy
and is sufficient to combat the spread of IBD with limited resources
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