Complete monotonicity of a function involving the p-psi function and alternative proofs

Valmir Krasniqi¹ & Feng Qi²,³,⁴,∗

¹Department of Mathematics, University of Prishtina, Prishtinë 10000, Republic of Kosovo
²College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region, 028043, China
³Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, 300387, China
⁴Institute of Mathematics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China

*Corresponding author’s e-mail: qifeng618@gmail.com, qifeng618@hotmail.com, qifeng618@qq.com
*Corresponding author’s URL: http://qifeng618.wordpress.com

Copyright ©2014 Valmir Krasniqi & Feng Qi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In the paper, the authors prove that the function $x^{\alpha} \left[\ln \frac{x^{p+1}}{p+1} - \psi_p(x) \right]$ is completely monotonic on $(0, \infty)$ if and only if $\alpha \leq 1$, where $p \in \mathbb{N}$ and $\psi_p(x)$ is the p-analogue of the classical psi function $\psi(x)$.

Keywords: completely monotonic function; necessary and sufficient condition; p-gamma function; p-psi function; inequality

MSC: Primary 33D05; Secondary 26A48, 33B15, 33E50

1. Introduction

Recall from [12, Chapter XIII], [16, Chapter 1] and [17, Chapter IV] that a function f is said to be completely monotonic on an interval I if f has derivatives of all orders on I and satisfies

$$0 \leq (-1)^n f^{(n)}(x) < \infty \quad (1.1)$$

for $x \in I$ and $n \geq 0$. The celebrated Bernstein-Widder’s Theorem (see [16, p. 3, Theorem 1.4] or [17, p. 161, Theorem 12b]) characterizes that a necessary and sufficient condition that $f(x)$ should be completely monotonic for $0 < x < \infty$ is that

$$f(x) = \int_0^\infty e^{-xt} \, d\alpha(t), \quad (1.2)$$

where $\alpha(t)$ is non-decreasing and the integral converges for $0 < x < \infty$. This expresses that a completely monotonic function f on $[0, \infty)$ is a Laplace transform of the measure α.
It is common knowledge that the classical Euler’s gamma function \(\Gamma(x) \) may be defined for \(x > 0 \) by
\[
\Gamma(x) = \int_0^\infty t^{x-1}e^{-t} \, dt.
\]
The logarithmic derivative of \(\Gamma(x) \), denoted by \(\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)} \), is called psi function or digamma function.

An alternative definition of the gamma function \(\Gamma(x) \) is
\[
\Gamma(x) = \lim_{p \to \infty} \Gamma_p(x),
\]
where
\[
\Gamma_p(x) = \frac{p^p x}{x(x+1)\cdots(x+p)} = \frac{p^x}{x(x+1/1)\cdots(x+p/1)}
\]
for \(x > 0 \) and \(p \in \mathbb{N} \), the set of all positive integers. See [3, p. 250]. The \(p \)-analogue of the psi function \(\psi(x) \) is defined as the logarithmic derivative of the \(\Gamma_p \) function, that is,
\[
\psi_p(x) = \frac{d}{dx} \ln \Gamma_p(x) = \frac{\Gamma_p'(x)}{\Gamma_p(x)}.
\]

The function \(\psi_p \) has the following properties:

1. It has the following representations
\[
\psi_p(x) = \ln p - \sum_{k=0}^{p-1} \frac{1}{x+k} = \ln p - \int_0^\infty \frac{1 - e^{-(p+1)t}}{1 - e^{-t}} e^{-xt} \, dt.
\]

2. It is increasing on \((0, \infty)\) and \(\psi_p'(x) \) is completely monotonic on \((0, \infty)\).

The very right hand side of the formula \((1.6)\) corrects errors appeared in [8, p. 374, Lemma 5] and [10, p. 29, Lemma 2.3].

In [2, pp. 374–375, Theorem 1], it was proved that the function
\[
\theta_{\alpha}(x) = x^\alpha[\ln x - \psi(x)]
\]
is completely monotonic on \((0, \infty)\) if and only if \(\alpha \leq 1 \). For the history, background, applications and alternative proofs of this conclusion, please refer to [4, 13, p. 8, Section 1.6.6] and closely related references therein.

The aim of this paper is to generalize [2, pp. 374–375, Theorem 1] and [4, p. 105, Theorem 1] to the case of the \(p \)-analogue \(\psi_p(x) \) of the psi function \(\psi(x) \) as follows.

Theorem 1.1. The function
\[
\theta_{p,\alpha}(x) = x^\alpha \left[\ln \frac{px}{x+p+1} - \psi_p(x) \right]
\]
for \(p \in \mathbb{N} \) is completely monotonic on \((0, \infty)\) if and only if \(\alpha \leq 1 \).

Remark 1.1. Letting \(p \to \infty \) in Theorem 1.1, we obtain [2, pp. 374–375, Theorem 1] and [4, p. 105, Theorem 1].

2. Proofs of Theorem 1.1

First Proof. From the identity \((1.6)\) and the integral expression
\[
\ln \frac{b}{a} = \int_0^\infty \frac{e^{-at} - e^{-bt}}{t} \, dt
\]
in [1, p. 230, 5.1.32], we obtain
\[
\theta_{p,1}(x) = x \int_0^\infty [1 - e^{-(p+1)t}] \varphi(t) e^{-xt} \, dt,
\]
where \(\varphi(t) \) is a suitable function.
where
\[\varphi(t) = \frac{1}{1 - e^{-t}} - \frac{1}{t}. \] (2.3)

The function \(\varphi(t) \) is increasing on \((0, \infty)\) with
\[\lim_{t \to 0^+} \varphi(t) = \frac{1}{2} \quad \text{and} \quad \lim_{t \to \infty} \varphi(t) = 1. \] (2.4)

See [5, 6, 7, 11, 14, 15, 18] and related references therein. Therefore, for \(x > 0 \) and \(n \in \mathbb{N} \), we have
\[
(-1)^n \theta_{p,1}^{(n)}(x) = x(-1)^n \frac{d^n}{dx^n} \int_0^{\infty} [1 - e^{-(p+1)t}] \varphi(t)e^{-xt} dt - (-1)^n \frac{d^{n-1}}{dx^{n-1}} \int_0^{\infty} [1 - e^{-(p+1)t}] \varphi(t)e^{-xt} dt
\]
\[= x \int_0^{\infty} t^n \varphi(t)[1 - e^{-(p+1)t}]e^{-xt} dt - n \int_0^{\infty} t^{n-1} \varphi(t)[1 - e^{-(p+1)t}]e^{-xt} dt
\]
\[= \int_0^{\infty} t^n \varphi(t)[1 - e^{-(p+1)t}]e^{-xt} dt - n \int_0^{\infty} t^{n-1} \varphi(t)[1 - e^{-(p+1)t}]e^{-xt} dt + \int_0^{\infty} t^{n-1} \varphi(t)(tx - n)e^{-xt} dt
\]
\[> \varphi \left(\frac{n}{x} \right) \int_0^{\infty} t^n \varphi(t)[1 - e^{-(p+1)t}]e^{-xt} dt - n \int_0^{\infty} t^{n-1} \varphi(t)[1 - e^{-(p+1)t}]e^{-xt} dt
\]
\[= \varphi \left(\frac{n}{x} \right) \int_0^{\infty} t^n e^{-xt} dt - n \int_0^{\infty} t^{n-1} e^{-xt} dt + n \int_0^{\infty} t^{n-1} e^{-(p+1)t} dt
\]
\[= \varphi \left(\frac{n}{x} \right) \left[\int_0^{\infty} t^n e^{-xt} dt - \frac{n!}{x^{n+1}} - \frac{n!}{(x + p + 1)^{n+1}} + n \frac{(n - 1)!}{x^n} + n \frac{(n - 1)!}{(x + p + 1)^n} \right]
\]
\[= \varphi \left(\frac{n}{x} \right) \int_0^{\infty} t^n e^{-xt} dt - \frac{n!}{x^{n+1}} - \frac{n!}{(x + p + 1)^{n+1}} + n \frac{1}{x^n} + \frac{1}{(x + p + 1)^n}
\]
\[= \varphi \left(\frac{n}{x} \right) \int_0^{\infty} t^n e^{-xt} dt - \frac{n!}{x^{n+1}} - \frac{n!}{(x + p + 1)^{n+1}} + n \frac{1}{x^n} + \frac{1}{(x + p + 1)^n}
\]
\[> 0,
\]
where we used the formula
\[
\frac{1}{x^n} = \frac{1}{\Gamma(n)} \int_0^{\infty} t^{n-1} e^{-xt} dt
\] (2.5)
for real numbers \(x > 0 \) and \(\omega > 0 \), see [1, p. 255, 6.1.1]. So we obtain that the function \(\theta_{p,1}(x) \) is completely monotonic on \((0, \infty)\).

Since
\[
(-1)^n [u(x)v(x)]^{(n)} = \sum_{i=0}^{n} \binom{n}{i} \left[(-1)^i u^{(i)}(x) \right] \left[(-1)^{n-i} v^{(n-i)}(x) \right],
\]
the product of any two completely monotonic function is also completely monotonic on their common domain. On the other hand, the function \(x^{\alpha-1} \) for \(\alpha < 1 \) is clearly completely monotonic on \((0, \infty)\). Consequently the function
\[\theta_{p,\alpha}(x) = x^{\alpha-1} \theta_{p,1}(x) \]
for \(\alpha \leq 1 \) is completely monotonic on \((0, \infty)\).

Conversely, if \(\theta_{p,\alpha}(x) \) is completely monotonic on \((0, \infty)\), then
\[
\frac{d \theta_{p,\alpha}(x)}{dx} = x^{\alpha-1} \left\{ \alpha \left[\ln \frac{px}{x + p + 1} - \psi_p(x) \right] + \frac{p + 1}{x + p + 1} - x \psi'_p(x) \right\} \leq 0
\]
for $x > 0$, equivalently,

$$\alpha \leq \frac{x\psi_p'(x) - \frac{p+1}{x+p+1}}{\ln \frac{px}{x+p+1} - \psi_p(x)}.$$

Employing L'Hôpital's rule and (1.6) results in

$$\lim_{x \to \infty} \frac{x\psi_p'(x) - \frac{p+1}{x+p+1}}{\ln \frac{px}{x+p+1} - \psi_p(x)} = \lim_{x \to \infty} \frac{x\psi_p'(x) + \psi_p'(x) + \frac{p+1}{(x+p+1)^2}}{\frac{1}{x} - \frac{1}{x+p+1} - \sum_{k=0}^{p} \frac{1}{(x+k)^2}} = 1,$$

so it is necessary that $\alpha \leq 1$. The proof is complete. \hfill \Box

Second Proof. From (2.2) and by integration by part lead to

$$\theta_{p,1}(x) = -\int_0^\infty \left[1 - e^{-(p+1)t}\right] \varphi(t) \frac{d}{dt} e^{-xt} \ dt - \left\{ \int_0^\infty \left[1 - e^{-(p+1)t}\right] \varphi(t) \right\} e^{-xt} \bigg|_{t=0}^{t=\infty}$$

$$= \int_0^\infty \left\{ [1 - e^{-(p+1)t}] \varphi(t) + (p+1)e^{-(p+1)t} \varphi(t) \right\} e^{-xt} \ dt.$$

Therefore, for showing that the function $\theta_{p,1}(x)$ is completely monotonic on $(0, \infty)$ for all $p \in \mathbb{N}$, it suffices to prove that the function

$$[1 - e^{-(p+1)t}] \varphi'(t) + (p+1)e^{-(p+1)t} \varphi(t)$$

is positive. Since the function $\varphi(t)$ is increasing on $(0, \infty)$, the derivative $\varphi'(t)$ is positive on $(0, \infty)$. Further considering the limits in (2.4), the positivity of $\varphi(t)$ follows. As a result, the function (2.6) is positive.

The rest of the proof is the same as the first proof. \hfill \Box

Remark 2.1. This paper is a slightly modified version of the preprint [9].

Acknowledgements

The second author was partially supported by the National Natural Science Foundation of China under Grant No. 11361038 and by the Foundation of the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region under Grant No. NJZY14192, China.

References

