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2College of Mathematics, Inner Mongolia University for Nationalities,
Tongliao City, Inner Mongolia Autonomous Region, 028043, China

3Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, 300387, China
4Institute of Mathematics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China

*Corresponding author’s e-mail: qifeng618@gmail.com, qifeng618@hotmail.com, qifeng618@qq.com
*Corresponding author’s URL: http: // qifeng618. wordpress. com

Copyright c©2014 Valmir Krasniqi& Feng Qi. This is an open access article distributed under the Creative Commons Attribution

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

Abstract

In the paper, the authors prove that the function xα
[
ln px

x+p+1 − ψp(x)
]

is completely monotonic on (0,∞) if and
only if α ≤ 1, where p ∈ N and ψp(x) is the p-analogue of the classical psi function ψ(x).
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1. Introduction

Recall from [12, Chapter XIII], [16, Chapter 1] and [17, Chapter IV] that a function f is said to be completely
monotonic on an interval I if f has derivatives of all orders on I and satisfies

0 ≤ (−1)nf (n)(x) < ∞ (1.1)

for x ∈ I and n ≥ 0. The celebrated Bernstein-Widder’s Theorem (see [16, p. 3, Theorem 1.4] or [17, p. 161,
Theorem 12b]) characterizes that a necessary and sufficient condition that f(x) should be completely monotonic
for 0 < x < ∞ is that

f(x) =
∫ ∞

0

e−xt dα(t), (1.2)

where α(t) is non-decreasing and the integral converges for 0 < x < ∞. This expresses that a completely monotonic
function f on [0,∞) is a Laplace transform of the measure α.
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It is common knowledge that the classical Euler’s gamma function Γ(x) may be defined for x > 0 by

Γ(x) =
∫ ∞

0

tx−1e−t d t.

The logarithmic derivative of Γ(x), denoted by ψ(x) = Γ′(x)
Γ(x) , is called psi function or digamma function.

An alternative definition of the gamma function Γ(x) is

Γ(x) = lim
p→∞

Γp(x), (1.3)

where

Γp(x) =
p!px

x(x + 1) · · · (x + p)
=

px

x(1 + x/1) · · · (1 + x/p)
(1.4)

for x > 0 and p ∈ N, the set of all positive integers. See [3, p. 250]. The p-analogue of the psi function ψ(x) is
defined as the logarithmic derivative of the Γp function, that is,

ψp(x) =
d

d x
ln Γp(x) =

Γ′p(x)
Γp(x)

. (1.5)

The function ψp has the following properties:

1. It has the following representations

ψp(x) = ln p−
p∑

k=0

1
x + k

= ln p−
∫ ∞

0

1− e−(p+1)t

1− e−t
e−xt d t. (1.6)

2. It is increasing on (0,∞) and ψ′p is completely monotonic on (0,∞).

The very right hand side of the formula (1.6) corrects errors appeared in [8, p. 374, Lemma 5] and [10, p. 29,
Lemma 2.3].

In [2, pp. 374–375, Theorem 1], it was proved that the function

θα(x) = xα[lnx− ψ(x)] (1.7)

is completely monotonic on (0,∞) if and only if α ≤ 1. For the history, background, applications and alternative
proofs of this conclusion, please refer to [4], [13, p. 8, Section 1.6.6] and closely related references therein.

The aim of this paper is to generalize [2, pp. 374–375, Theorem 1] and [4, p. 105, Theorem 1] to the case of the
p-analogue ψp(x) of the psi function ψ(x) as follows.

Theorem 1.1. The function

θp,α(x) = xα

[
ln

px

x + p + 1
− ψp(x)

]
(1.8)

for p ∈ N is completely monotonic on (0,∞) if and only if α ≤ 1.

Remark 1.1. Letting p →∞ in Theorem 1.1, we obtain [2, pp. 374–375, Theorem 1] and [4, p. 105, Theorem 1].

2. Proofs of Theorem 1.1

First Proof. From the identity (1.6) and the integral expression

ln
b

a
=

∫ ∞

0

e−at − e−bt

t
d t (2.1)

in [1, p. 230, 5.1.32], we obtain

θp,1(x) = x

∫ ∞

0

[
1− e−(p+1)t

]
ϕ(t)e−xt d t, (2.2)
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where

ϕ(t) =
1

1− e−t
− 1

t
. (2.3)

The function ϕ(t) is increasing on (0,∞) with

lim
t→0+

ϕ(t) =
1
2

and lim
t→∞

ϕ(t) = 1. (2.4)

See [5, 6, 7, 11, 14, 15, 18] and related references therein. Therefore, for x > 0 and n ∈ N, we have

(−1)nθ
(n)
p,1 (x) = x(−1)n dn

dxn

∫ ∞

0

[
1− e−(p+1)t

]
ϕ(t)e−xt d t− (−1)n−1n

dn−1

dxn−1

∫ ∞

0

[
1− e−(p+1)t

]
ϕ(t)e−xt d t

= x

∫ ∞

0

tnϕ(t)
[
1− e−(p+1)t

]
e−xt d t− n

∫ ∞

0

tn−1ϕ(t)
[
1− e−(p+1)t

]
e−xt d t

=
∫ n/x

0

tn−1
[
1− e−(p+1)t

]
ϕ(t)(tx− n)e−xt d t +

∫ ∞

n/x

tn−1
[
1− e−(p+1)t

]
ϕ(t)(tx− n)e−xt d t

> ϕ

(
n

x

)∫ n/x

0

tn−1
[
1− e−(p+1)t

]
(tx− n)e−xt d t + ϕ

(
n

x

)∫ ∞

n/x

tn−1
[
1− e−(p+1)t

]
(tx− n)e−xt d t

= ϕ

(
n

x

)∫ ∞

0

tn−1
[
1− e−(p+1)t

]
(tx− n)e−xt d t

= ϕ

(
n

x

)[
x

∫ ∞

0

tn
[
1− e−(p+1)t

]
e−xt d t− n

∫ ∞

0

tn−1
[
1− e−(p+1)t

]
e−xt d t

]

= ϕ

(
n

x

)[
x

∫ ∞

0

tne−xt d t− x

∫ ∞

0

tne−(x+p+1)t d t− n

∫ ∞

0

tn−1e−xt d t + n

∫ ∞

0

tn−1e−(x+p+1)t d t

]

= ϕ

(
n

x

)[
x

n!
xn+1

− x
n!

(x + p + 1)n+1
− n

(n− 1)!
xn

+ n
(n− 1)!

(x + p + 1)n

]

= ϕ

(
n

x

)
n!

[
1
xn

− x

(x + p + 1)n+1
− 1

xn
+

1
(x + p + 1)n

]

= ϕ

(
n

x

)
n!

(x + p + 1)n

(
1− x

x + p + 1

)

= ϕ

(
n

x

)
n!(p + 1)

(x + p + 1)n+1

> 0,

where we used the formula

1
xω

=
1

Γ(ω)

∫ ∞

0

tω−1e−xt d t (2.5)

for real numbers x > 0 and ω > 0, see [1, p. 255, 6.1.1]. So we obtain that the function θp,1(x) is completely
monotonic on (0,∞).

Since

(−1)n[u(x)v(x)](n) =
n∑

i=0

(
n

i

)[
(−1)iu(i)(x)

][
(−1)n−iv(n−i)(x)

]
,

the product of any two completely monotonic function is also completely monotonic on their common domain. On
the other hand, the function xα−1 for α < 1 is clearly completely monotonic on (0,∞). Consequently the function

θp,α(x) = xα−1θp,1(x)

for α ≤ 1 is completely monotonic on (0,∞).
Conversely, if θp,α(x) is completely monotonic on (0,∞), then

d θp,α(x)
dx

= xα−1

{
α

[
ln

px

x + p + 1
− ψp(x)

]
+

p + 1
x + p + 1

− xψ′p(x)
}
≤ 0
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for x > 0, equivalently,

α ≤
xψ′p(x)− p+1

x+p+1

ln px
x+p+1 − ψp(x)

.

Employing L’Hôspital’s rule and (1.6) results in

lim
x→∞

xψ′p(x)− p+1
x+p+1

ln px
x+p+1 − ψp(x)

= lim
x→∞

xψ′′p (x) + ψ′p(x) + p+1
(x+p+1)2

1
x − 1

x+p+1 − ψ′p(x)
= lim

x→∞

p+1
(x+p+1)2 − x

∑p
k=0

2
(x+k)3 +

∑p
k=0

1
(x+k)2

1
x − 1

x+p+1 −
∑p

k=0
1

(x+k)2

= 1,

so it is necessary that α ≤ 1. The proof is complete.

Second Proof. From (2.2) and by integration by part lead to

θp,1(x) = −
∫ ∞

0

[
1− e−(p+1)t

]
ϕ(t)

d e−xt

d t
d t

=
∫ ∞

0

{[
1− e−(p+1)t

]
ϕ(t)

}′
e−xt d t− {[

1− e−(p+1)t
]
ϕ(t)e−xt

}∣∣t=∞
t=0

=
∫ ∞

0

{[
1− e−(p+1)t

]
ϕ′(t) + (p + 1)e−(p+1)tϕ(t)

}
e−xt d t.

Therefore, for showing that the function θp,1(x) is completely monotonic on (0,∞) for all p ∈ N, it suffices to prove
that the function
[
1− e−(p+1)t

]
ϕ′(t) + (p + 1)e−(p+1)tϕ(t) (2.6)

is positive. Since the function ϕ(t) is increasing on (0,∞), the derivative ϕ′(t) is positive on (0,∞). Further
considering the limits in (2.4), the positivity of ϕ(t) follows. As a result, the function (2.6) is positive.

The rest of the proof is the same as the first proof.

Remark 2.1. This paper is a slightly modified version of the preprint [9].
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