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Abstract

In this paper, a mathematical model is proposed and analyzed to study the effect of toxicant in a three species
food chain system with “food-limited” growth of prey population. The mathematical model is formulated using the
system of non-linear ordinary differential equations. In the model, there are seven state variables, viz, prey density,
intermediate predator density, density of top predator, concentration of toxicant in the environment, concentration
of toxicant in the prey, concentration of toxicant in the intermediate predator and concentration of toxicant in
the top predator. In the model, it is assumed that the carrying capacity and growth rate of prey is affected by
environmental toxicant. Toxicant is transferred to intermediate predator and top predator populations through
food chain pathways. All the feasible equilibria of the system are obtained and the conditions are determined for
the survival or extinction of species under the effect of toxicant. The local and global stability analysis of all the
feasible equilibria are carried out. Further, the results are compared with the case when toxicant is absent in the
system. Finally, we support our analytical findings with numerical simulations.
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1. Introduction

The effects of toxic substances on ecological communities is an important challenging problem from an environmental
point of view. Many species are exposed to various kinds of stresses including toxicants which are affecting their
growth rate, carrying capacity and their resources. The effects of toxicants on ecological communities including
three-species food chain systems are very complex dynamical systems to be undertaken for mathematical study.

Generally a single population grows logistically and implicit assumption contained in the logistic growth equation
is that the average growth rate is a linear function of the population density. It has been shown that this assumption
is not realistic for a population with food-limited growth. Filter feeders strain the water column indiscriminately
for small prey, typically phyto- and zooplankton. This category of fishes includes threadfin shad, American shad,
inland silversides and anchovies. Some evidence suggests that some of these species are “food-limited” due to the
depressed levels of plankton after the introduction of the Amur River clam [1]. David [2] in his experimental study,
says that the labyrinth spider appears to be a “food-limited” species in which exploitative competition for food is
weak or absent. It has been found in the nature that the predators for spider are mouse and lizard and mouse is
predated by snake whereas the lizards are killed and eaten by hawk.
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The food-limited population model incorporated the concept of limited food and space and it was formulated by
modifying the logistic growth equation considering the average growth rate to be a non-linear function of population
density. The food-limited population models have been proposed by several researchers [3, 4] for the dynamics of a
population where growth limitations were based on the proportion of available resources not utilized. Some studies
about food-limited population models have been carried out by few authors [5, 6], who have obtained an interesting
results about the stability and Hopf bifurcation of positive solutions.

Three species food chain systems have received much attention from many applied mathematicians and ecologists
in recent years [7, 8]. In [9], Zhang et.al, studied and established an experimental marine food chain of three levels
(microalgae → zooplankton → fish) to investigate the effect of feeding selectivity on the transfer of methyl
mercury (MeHg) through the food chain system.

Fish-eating birds in certain parts of the United States may ingest large amounts of methylmercury in their
diet [10]. The methylmercury-containing bacteria may be consumed by the next higher level in the food chain, or
the bacteria may excrete the methylmercury to the water where it can quickly adsorb to plankton, which are also
consumed by the next level in the food chain [11, 12]. Because animals accumulate methylmercury faster than they
eliminate it, animals consume higher concentrations of mercury at each successive level of the food chain. Small
environmental concentrations of methylmercury can thus readily accumulate to potentially harmful concentrations
in fish, fish-eating wildlife and people. Even at very low atmospheric deposition rates in locations remote from point
sources, mercury biomagnification can result in toxic effects in consumers at the top of these aquatic food chains.
Poisoning from pesticides can travel up the food chain [13, 14]; for example, birds can be harmed when they eat
insects and worms that have consumed pesticides. A number of studies [15, 16] have shown that pesticides have had
harmful effects on growth and reproduction of earthworms, which are in turn consumed by terrestrial vertebrates
such as birds and small mammals.

Previously, some research have been done on tri-trophic food-chain systems including toxicant effects on the
survival or extinction of species in the system [17, 18]. It has been observed that toxicants have very pronounced
effects on the species if the availability of the resources is limited. To our knowledge, almost no studies have been
conducted to investigate the effect of toxicant on a three-species food chain systems with “food-limited” growth of
prey population and therefore, in this paper, a mathematical model is proposed to study the effects of toxicants on
a three species food-chain system with “food-limited” growth of prey population. The present model may be suited
for the food chain system comprising of Spider → Mouse → Snake and also for the food chain system consisting
of Spider → Lizard→ Hawk.

2. Mathematical model

We have considered a three species food chain system under the stress of a toxicant considering “food-limited”
growth of prey population. In the model, it is assumed that the growth rate and the carrying capacity of prey is
negatively affected by environmental toxicant [19]. Toxicant is transferred to intermediate predator and top predator
populations through food chain pathways. For the prey population, a simple “food-limited” growth equation [3, 4],
is considered. Lotka-Volterra type of prey-predator interaction is considered in the model. The model is formulated
with the help of following system of ordinary differential equations

Main Model: (With toxic effect)

dx

dt
= xr(U)

(

K(T )− x

K(T ) + r0cx

)

− a1xy (1)

dy

dt
= β1a1xy − a2yz − β11V y − d1y − b1y

2 (2)

dz

dt
= β2a2yz − β22Wz − d2z − c3z

2 (3)

dT

dt
= Q0 − δ0T − α1xT (4)

dU

dt
= α1xT − δ1U − β3(U)a1xy (5)

dV

dt
= β3(U)a1xy − δ2V − β4(V )a2yz (6)

dW

dt
= β4(V )a2yz − δ3W (7)
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The above system of ordinary differential equations are associated with the following initial conditions:

x(0) > 0, y(0) > 0, z(0) > 0, T (0) > 0, U(0) ≥ 0, V (0) ≥ 0,W (0) ≥ 0.

In the above model, x is the density of prey population, y is the density of intermediate predator population, z is the
density of top predator population, T is the concentration of toxicant in the environment, U is the concentration
of toxicant in the prey population, V is the concentration of toxicant in the intermediate predator population
and W is the concentration of toxicant in the top predator population. In the model, first term in the prey
equation describes “food-limited” growth rate function under the effect of toxicant, d1 and d2 are the death rates of
intermediate predator and top predator populations respectively, b1 and c3 are the intraspecific competition rates
due to crowding of intermediate and top predator populations respectively. K(T ) represents the carrying capacity
of prey which is negatively affected by T , the function r(U) denotes the specific growth rate of prey population
which is negatively affected by U , β1 and β2 are conversion coefficients, β3(U) and β4(V ) are toxicant transfer
functions. Q0 is the rate of introduction of toxicant into the environment. δ0, δ1, δ2 and δ3 are first order decay
rates of toxicants in the environment as well as in the populations. β11 and β22 are the death rates of predators due
to organismal toxicant concentration. k0 is the natural carrying capacity. Food limited parameter is denoted by c.
r0 is the intrinsic growth rate of prey. k1 and r1 are the constants which determine the rate of decrease of carrying
capacity and growth rate of prey population respectively due to the presence of toxicant. α1 is the depletion rate
of toxicant in the environment due to its intake by the population. a1 and a2 are the loss of prey and intermediate
predator due to intermediate and top predators. c, a1, a2, a3, a4 and α1 are the positive constants.

For our analysis, in the model we consider, K(T ) = k0 − k1T, r(U) = r0 − r1U , β3(U) = a3U and β4(V ) = a4V .
Now in order to compare the results of main model with the system which is free from toxicant, we analyze the
following sub-system:
Sub Model: (Without toxic effect)

dx

dt
= r0x

(

k0 − x

k0 + r0cx

)

− a1xy (8)

dy

dt
= a1β1xy − a2yz − d1y − b1y

2 (9)

dz

dt
= a2β2yz − d2z − c3z

2 (10)

The above system of ordinary differential equations are associated with the following initial conditions: x(0) >
0, y(0) > 0, z(0) > 0. Where, the state variables and parameters are the same as defined for the main model.

3. Analysis of Sub-Model

The sub model has following four non-negative equilibria in x, y, z space namely, Ê20 = (0, 0, 0), Ě21 = (k0, 0, 0),

Ē22 = (x̄, a1β1x̄−d1

b1
, 0) is positive under conditions: x̄ =

−S2±
√

S2

2
+4S1S3

2S1

> 0 and a1β1x̄ > d1,

where, S1 = r0ca
2
1β1, S2 = r0b1 + a2

1k0β1 − r0ca1d1, S3 = k0(r0b1 + a1d1)

and E∗
23 = (x∗, a1β1c3x∗+(a2d2−d1c3)

b1c3+a2

2
β2

, 1
c3

(a2β2y
∗ − d2)) is positive under the following conditions:

x∗ =
−H2±

√
H2

2
+4H1H3

2H1

> 0, clearly, H3 > 0, a2d2 > d1c3 and a2β2y
∗ > d2,

where, H1 = r0ca
2
1β1c3, H2 = a2

1β1k0c3 +r0(b1c3 +a2
2β2)+r0ca1(a2d2−d1c3), H3 = r0k0(b1c3 +a2

2β2)−a1k0(a2d2−
d1c3). Now, we will discuss the dynamical behavior of the sub-model.

• The equilibrium point Ê20 is always unstable.

• The equilibrium point Ě21 is locally asymptotically stable under condition: a1β1k0 < d1.
Remark 1: Here, it may be noted that if the product of the predation rate of intermediate predator, its
conversion efficiency and carrying capacity of prey is less than the death rate of intermediate predator then
prey population will survive and both the predator populations will go to extinction.

• The equilibrium point Ē22 is locally asymptotically stable under the following conditions:
a2β2ȳ < d2 and a1β1x̄ > d1.
Remark 2: Here, it may be noted that if the product of the predation rate of top predator, its conversion
efficiency and equilibrium of intermediate predator is less than the death rate of top predator, and also



Global Journal of Mathematical Analysis 123

if the product of the predation rate of intermediate predator, its conversion efficiency and equilibrium of
prey population is greater than the death rate of intermediate predator then prey and intermediate predator
populations will survive and the top predator may tend to extinction.

• The equilibrium point E∗
23is locally asymptotically stable under the following conditions:

a2β2y
∗ > d2 and a2d2 > d1c3.

Remark 3: From the above conditions, it may be noted that if the product of the predation rate of top
predator, its conversion efficiency and equilibrium of intermediate predator is greater than the death rate of
top predator, and also if the product of the predation rate of top predator and its death rate is greater than
the death rate of intermediate predator is multiplied by intraspecific competition rate due to crowding of top
predator then all the population will survive.

Now, we will establish that the system described by Sub-Model is bounded. We begin with the following Lemma.
Lemma 3.2: The set Ω2 = {(x, y, z) : 0 ≤ x(t) ≤ k0, 0 ≤ β1x(t) + y(t) + 1

β2
z(t) ≤ w1} is a region of attraction for

all solutions initiating in the interior of the positive region, where w1 = xuβ1(r0k0+1)
Φ1

, Φ1 = min{1, d1, d2}.
Proof: From (8) we get,

dx

dt
≤ r0x(

k0 − x

k0 + r0cx
)

then by the usual comparison theorem, we get as t→ ∞, x ≤ k0.
Now, let us consider the following function: w1(t) = β1x(t) + y(t) + 1

β2

z(t)

by using (8) to (10), we get
dw1

dt
+ Φ1w1 ≤ xuβ1(r0k0 + 1)

where Φ1 = min{1, d1, d2} then by the usual comparison theorem, we get as t→ ∞,

w1 =
xuβ1(r0k0 + 1)

Φ1

This proves the lemma.
Theorem 3.2: If the following inequalities hold in the region Ω2,

2a2
1D1(1 − β1yu)2 < r0k0(1 + r0c)(a2(zu − z∗) + b1yu) (11)

2a2
2(y

∗ − β2zu)2 < c3zu(a2(zu − z∗) + b1yu) (12)

then the positive equilibrium E∗
23 is globally asymptotically stable with respect to all solutions initiating in the

interior of positive region Ω2. Where D1 = (k0 + r0cxu)(k0 + r0cx
∗).

Proof: We consider the following positive definite function about E∗
23:

V2 = (x− x∗ − x∗ln( x
x∗

)) + I1
2 (y − y∗)2 + I2

2 (z − z∗)2

Differentiating V with respect to time t, we get

dV2

dt
= (

x − x∗

x
)
dx

dt
+ I1(y − y∗)

dy

dt
+ I2(z − z∗)

dz

dt

Using system of equations (8)-(10), we get after some algebraic manipulations

dV2

dt
= −(x− x∗)2(1 + r0c)(r0k0/D1) − (y − y∗)2(d1 + a2z − a1β1x

∗ + b1(y + y∗))(I2/2)

−(z − z∗)2(d2 + c3(z + z∗) − a2β2y
∗)I2 − (x− x∗)(y − y∗)a1(1 − β1I1y)

−(y − y∗)(z − z∗)a2(I1y
∗ − β2I2z)

Now, dV2/dt can further be written as sum of the quadratic forms as

dV2

dt
≤ −[(

1

2
a11(x − x∗)2 + a12(x − x∗)(y − y∗) +

1

2
a22(y − y∗)2)

+(
1

2
a22(y − y∗)2 + a23(y − y∗)(z − z∗) +

1

2
a33(z − z∗)2)]
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where, a11 = (1 + r0c)(r0k0/D1), a12 = a1(1 − β1I1y), a22 = (I1/2)(a2(z − z∗) + b1y
∗), a23 = a2(I1y

∗ − β2I2z),
a33 = I2c3z, D1 = (k0 + r0cx)(k0 + r0cx

∗). Now, by using Sylvester’s criteria and by choosing I1 = I2 = 1, we get
that dV2/dt is negative definite under the following conditions:

a11a22 > a2
12 (13)

a22a33 > a2
23 (14)

We note that, (11) ⇒ (13) and (12) ⇒ (14). Hence V2 is a Lyapunov function with respect to E∗
23, whose domain

contains the region of attraction Ω2, proving the theorem.

4. Analysis of Main Model

4.1. Equilibria of Main Model

The Main Model has four non negative equilibria in x, y, z, T , U , V , W space namely, Ê10 = (0, 0, 0, T̂ , 0, 0, 0),
Ě11 = (x̌, 0, 0, Ť , Ǔ , 0, 0), Ē12 = (x̄, ȳ, 0, T̄ , Ū , V̄ , 0) and E∗

13 = (x∗, y∗, z∗, T ∗, U∗, V ∗,W ∗). The existence of Ê10 is
obvious. We prove the existence of Ě11, Ē12 and E∗

13 as follows:

• Ê10(0, 0, 0,
Q0

δ0

, 0, 0, 0)

• Ě11(x̌, 0, 0, Ť , Ǔ , 0, 0)

Ť =
Q0

δ0 + α1x̌
= f1(x)

Ǔ =
α1x̌Ť

δ1
=
α1x̌f1(x)

δ1
= f2(x)

and x̌ is given by the following quadratic equation: A1x̌
2 + A2x̌ − A3 = 0, where, A1 = α1, A2 = δ0 − k0α1,

A3 = k0δ0 − k1Q0. The equation will have a positive root provided k0δ0 > k1Q0 holds good.

• Ē12(x̄, ȳ, 0, T̄ , Ū , V̄ , 0)

(r0 − r1U)
(

K(T )−x

K(T )+r0cx

)

− a1y = 0 (15)

β1a1x− β11V − d1 − b1y = 0 (16)

Q0 − δ0T − α1xT = 0 (17)

α1xT − δ1U − a1a3Uxy = 0 (18)

a1a3Uxy − δ2V = 0 (19)

In this case, x̄, ȳ, T̄ , Ū and V̄ are the positive solutions of the system of equations
from (17),

T =
Q0

δ0 + α1x
= h1(x) (20)

by doing, [δ2(16) − β11(18 + 19)], we get,

U =
d1δ2 + α1β11xh1(x) − a1β1δ2 + r0b1δ2

a1

(

K(h1(x))−x

K(h1(x))+r0cx

)

δ1β11 + r0b1δ2

a1

(

K(h1(x))−x

K(h1(x))+r0cx

) = h2(x) (21)

from (15) and (16),

V =
1

a1β11

(

a2
1β1x− a1d1 − b1r(h2(x))

(

K(h1(x)) − x

K(h1(x)) + r0cx

))

= h3(x) (22)

from (16) to (19),

y =
1

b1δ1
(δ0β11h1(x) + δ1β11h2(x) + a1β1δ2x− d1δ2 −Q0β11) = h4(x) (23)
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Let

P (x) = a1a3xh2(x)h4(x) − δ2h3(x) (24)

Then we note that

P (0) =
δ2

a1β11
(a1d1 + b1r(U)) > 0

and
P (k0) = a1a3k0h2(k0)h4(k0) − δ2h3(k0) < 0

This guarantees the existence of a root of P (x) = 0 for 0 < x < k0, say x̄.
Further, this root will be unique provided

P ′(x) = a1a3[h2(x)h4(x) + xh′2(x)h4(x) + xh2(x)h
′
4(x)] − δ2h

′
3(x) < 0 (25)

Knowing the value of x̄, the values of T̄ , Ū , V̄ and ȳ can be computed from equations (20) to (23) respectively.

• E∗
13(x

∗, y∗, z∗, T ∗, U∗, V ∗,W ∗)
Here x∗, y∗, z∗, T ∗, U∗, V ∗ and W ∗ are the positive solutions of the system of algebraic equations
from (2),

T =
Q0

δ0 + α1x
= g1(x) (26)

from (5),

U =
α1xg1(x)

δ1 + a1a3xy
= g2(x, y) (27)

from (1) to (4), we get

z =
β1β22a1δ2x+ yi11 − i22 − β11β22(Q0 − δ0g1(x) − δ1g2(x, y))

a2δ2β22 + c3β11δ3
= g3(x, y) (28)

where, i11 = β11β2a2δ3 − b1δ2β22, i22 = d1δ2β22 + d2δ3β11.
from (6),

V =
a1a3xyg2(x, y)

δ2 + a2a4yg3(x, y)
= g4(x, y) (29)

from (3),

W =
1

β22
(a2β2y − d2 − c3g3(x, y)) = g5(x, y) (30)

Now, considering two functions,

G11(x, y) = [r0 − r1g2(x, y)](K(g1(x)) − x) − a1y[K(g1(x)) + r0cx] = 0 (31)

G12(x, y) = Q0 − δ0g1(x) − δ2g4(x, y) − δ3g5(x, y) = 0 (32)

For existence of x∗ and y∗, the two isoclines,

G11(x, y) = 0 (33)

G12(x, y) = 0 (34)

must intersect.
We note that

G11(0, 0) =
r0
δ0

(k0δ0 − k1Q0) > 0
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Fig.4.1

G11(0, 0) > 0 if k0δ0 > k1Q0.

G12(0, 0) =
δ2δ3(a2d2 − d1c3)

a2δ2β22 + β11c3δ3
> 0

G12(0, 0) > 0 if a2d2 > d1c3.
Also,
G11(0, y) = 0 then y = r0

a1

.
G11(x, 0) = 0 then x will have one positive root (ψ1 say), from the following cubic equation of x,
E11x

3 +E12x
2 +E13x−E4 = 0, where, E11 = α2

1(r0δ1 − r1Q0), E12 = α1[(r0δ1 − r1Q0)(δ0 −α1k0) + r0δ0δ1],
E13 = r0δ0δ1(δ0 − α1k0)− α1(r0δ1 − r1Q0)(k0δ0 − k1Q0), E4 = r0δ0δ1(k0δ0 − k1Q0). Here, E11 > 0, E12 > 0,
E13 > 0 and E4 > 0. If

δ0 > α1k0, r0δ1 > r1Q0, k0δ0 > k1Q0,

r0δ0δ1(δ0 − α1k0) > α1(r0δ1 − r1Q0)(k0δ0 − k1Q0).

G12(0, y) = 0 then

y =
δ2β22(a2d2 − d1c3)(a2δ2β22 + β11c3δ3)

c3(b1δ2β22 − β11β2a2δ3)
= yc(say) > 0,

if a2d2 > d1c3, b1δ2β22 > β11β2a2δ3.
G12(x, 0) = 0 then x will have one positive root (ψ2 say), from the following quadratic equation of x,
J1x

2−J2x−J3 = 0, where, J1 = a1α1δ2c3δ3β1β22, J2 = α1δ2δ3β22(a2d2−d1c3)+α1β22Q0(a2δ2β22+β11c3δ3)−
a1δ2δ3c

2
3β1β22, J3 = δ2β22(a2d2 − d1c3). For x,

x =
J2 ±

√

J2
2 + 4J1J3

2J1
> 0

clearly, J3 > 0 i.e., a2d2 > d1c3.
Thus both the isoclines intersect each other in the region: M = {(x, y) : 0 < x < ψ2, 0 < y < r0

a1
} in the

following two cases: (see Fig.4.1)

Case(i) : ψ2 > ψ1,
r0
a1

> yc (35)

Case(ii) : ψ2 < ψ1,
r0
a1

< yc (36)

This point of intersection will give x∗, y∗. For uniqueness of (x∗, y∗), we must have dy
dx
< 0 for both the curves

in the region M .

For curve (33),

dy

dx
=

−(1 + k1g
′
1(x))[r0 − r1g2(x, y)] − r1g

′
2(x, y)[K(g1(x)) − x]

a1[K(g1(x)) + r0cx]
< 0 (37)
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and for curve (34),

dy

dx
=

−δ0β22g
′
1(x) − δ2β22g

′
4(x, y) + c3δ3g

′
3(x, y)

a2β2δ3
< 0 (38)

In case (i), the absolute value of dy
dx

given by (37) is less than the absolute value of dy
dx

given by (38). For the
case (ii), just the opposite is the condition.
Knowing the values of T ∗, U∗, z∗, V ∗ and W ∗ can be computed from the equations (26)-(30).

Lemma 4.1: The set Ω1 = {(x, y, z, T, U, V,W ) : 0 ≤ x(t) ≤ k0, 0 ≤ β2y(t) + z(t) + T (t) + U(t) + V (t) +W (t) ≤
Q0

Φ2

, x(t) + y(t) + z(t) + T (t) ≥ Q0

Φ4

and z(t) + T (t) + U(t) + V (t) + W (t) ≥ Q0

Φ3

} is a region of attraction for
all solutions initiating in the interior of the positive region, where Φ2 = min{(d1 − a1β1β2xu), d2, δ0, δ1, δ2, δ3},
Φ3 = max{d2 + c3zu, δ0, δ1, δ2, δ3 + zuβ22}, Φ4 = max{a1yu + r1Uu( k0−k1Tl−xl

k0−k1Tu+r0cxl

), a2zu + d1 + b1yu + β11Vu, d2 +

c3zu + β22Wu, δ0 + α1xu}.
Proof: From (1) we get,

dx

dt
≤ r0x(

k0 − x

k0 + r0cx
)

then by the usual comparison theorem, we get as t→ ∞, x ≤ k0.
Now, let us consider the following function: w2(t) = β2y(t) + z(t) + T (t) + U(t) + V (t) +W (t)
by using (2) to (7), we get

dw2

dt
+ Φ2w2 ≤ Q0

where Φ2 = min{(d1 − a1β1β2xu), d2, δ0, δ1, δ2, δ3} and given that d1 > a1β1β2xu then by the usual comparison
theorem, we get as t→ ∞,

w2(t) ≤
Q0

Φ2

Again, let us consider the following function: w3(t) = z(t) + T (t) + U(t) + V (t) +W (t)
by using (3) to (7), we get

dw3

dt
+ Φ3w3 ≥ Q0

where Φ3 = max{d2 + c3zu, δ0, δ1, δ2, δ3 + zuβ22} then by the usual comparison theorem, we get as t→ ∞,

w3(t) ≥
Q0

Φ3

Again, w4(t) = x(t) + y(t) + z(t) + T (t)
by using (1) to (4), we get

dw4

dt
+ Φ4w4 ≥ Q0

where Φ4 = max{a1yu + r1Uu( k0−k1Tl−xl

k0−k1Tu+r0cxl

), a2zu + d1 + b1yu + β11Vu, d2 + c3zu + β22Wu, δ0 + α1xu} then by the
usual comparison theorem, we get as t→ ∞,

w4(t) ≥
Q0

Φ4

This proves the lemma.

4.2. Dynamical behaviour of the Main Model

The stability behavior of Ê10 and Ě11 can be studied by computing variational matrices, and Ē12 and E∗
13 can be

studied by computing Lyapunov’s direct method.
The general variational matrix corresponding to the Main Model is

J(x, y, z, T, U, V,W ) =





















−n11 −n12 0 −n14 −n15 0 0
n21 n22 −n23 0 0 −n26 0
0 n32 n33 0 0 0 −n37

−n41 0 0 −n44 0 0 0
n51 −n52 0 n54 −n55 0 0
n61 n62 −n63 0 n65 −n66 0
0 n72 n73 0 0 n76 −n77
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where,
n11 = µ1−r(U)µ2 +a1y, n12 = a1x, n14 = r(U)µ3, n15 = xr1µ2, n21 = a1β1y, n22 = a1β1x−a2z−β11V −d1−2b1y,
n23 = a2y n26 = β11y, n32 = a2β2z, n33 = a2β2y − β22W − d2 − 2c3z, n37 = β22z, n41 = α1T , n44 = (δ0 + α1x),
n51 = α1T − a1a3Uy n52 = a1a3Ux, n54 = α1x, n55 = δ1 + a1a3xy, n61 = a1a3Uy, n62 = a1a3Ux − a2a4V z,
n63 = a2a4V y, n65 = a1a3xy n66 = (δ2 + a2a4yz), n72 = a2a4V z, n73 = a2a4V y, n76 = a2a4yz, n77 = δ3,

µ1 =
(

2xr(U)K(T )
(K(T )+r0cx)2

)

, µ2 =
(

K(T )−x

K(T )+r0cx

)

, µ3 =
(

x2k1(1+rc)
(K(T )+r0cx)2

)

.

• About Ê10, the eigenvalues of the characteristic equation are r0, −d1, −d2, −δ0, −δ1, −δ2 and −δ3, which
shows that Ê10 is unstable.

• About Ě11, the eigenvalues of the characteristic equation are −µ1, a1β1x̌−d1, −d2, −(δ0+α1x̌), −δ1, −δ2 and
−δ3 which shows that Ě11 is locally asymptotically stable if k1Ť < k0, r1Ǔ < r0, a1β1x̌ < d1 and k1Q0 < k0δ0
hold good.
Remark 4: From the stability conditions of Ě11 it may be noted that if (i) the carrying capacity of prey
is positive, (ii) the growth rate of prey is positive, (iii) the product of the predation rate of intermediate
predator, its conversion efficiency and the equilibrium of prey is less than the death rate of intermediate
predator, and (iv) the rate of decrease of carrying capacity multiplied with the rate of introduction of toxicant
into the environment is less than the product of carrying capacity and the first order decay rate of toxicant
in the environment are satisfied then only prey population will survive.

Theorem 4.1: If the following inequalities hold

8(R2 + α1T̄N3)
2 < R1N3(δ0 + α1x̄) (39)

16(R3 − (α1T̄ − a1a3ȳŪ)N4)
2 < R1N4(δ1 + a1a3x̄ȳ) (40)

16(β11ȳN1 − a1a3x̄ŪN5)
2 < b1δ2ȳN1N5 (41)

12N5(a2a4V̄ ȳ)
2 < δ2N2(a2ȳβ2 − d2) (42)

16N5(a1a3x̄ȳ)
2 < δ2N4(δ1 + a1a3x̄ȳ) (43)

d2 < a2β2ȳ (44)

where,

N1 =
a2x̄

a1β1ȳ
(45)

N2 >
12N1(a2ȳ)

2

b1ȳ(a2ȳβ2 − d2)
(46)

N3 >
8N4(α1x̄)

2

(δ0 + α1x̄)(δ1 + a1a3x̄ȳ)
(47)

N4 <
b1ȳN1(δ1 + a1a3x̄ȳ)

(4a1a3x̄Ū)2
(48)

N5 <
R1δ2

(4a1a3ȳŪ)2
(49)

N6 <
N2δ3(a2ȳβ2 − d2)

3(a2a4V̄ ȳ)2
(50)

R1 =
x̄(1 + r0c)r(Ū )K(T̄ )

(K(T̄ ) + r0cx̄)2
, R2 =

x̄2k1(1 + r0c)r(Ū )

(K(T̄ ) + r0cx̄)2
, R3 =

r1x̄(K(T̄ ) − x̄)

K(T̄ ) + r0cx̄
,
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then the positive equilibrium Ē12 is locally asymptotically stable.
Proof: We first linearize the system about the equilibrium Ē12 by using the following transformations

x = x̄+ n1; y = ȳ + n2; z = z̄ + n3; T = T̄ + n4;
U = Ū + n5; V = V̄ + n6; W = W̄ + n7;

where n1, n2, n3, n4, n5, n6 and n7 are small perturbations around Ē12. Then we get the following linearized the
system,

dn1

dt
= −R1n1 − a2x̄n2 −R2n4 −R3n5

dn2

dt
= a1β1ȳn1 − b1ȳn2 − a2ȳn3 − β11ȳn6

dn3

dt
= −n3(a2ȳβ2 − d2)

dn4

dt
= −α1T̄ n1 − n4(δ0 + α1x̄)

dn5

dt
= n1(α1T̄ − a1a3ȳŪ) − n2a1a3Ū x̄+ α1x̄n4 − n5(δ1 + a1a3x̄ȳ)

dn6

dt
= a1a3ȳŪn1 + a1a3x̄Ūn2 − a2a4V̄ ȳn3 + a1a3ȳx̄n5 − δ2n6

dn7

dt
= a2a4V̄ ȳn3 − δ3n7

where,

R1 =
x̄(1 + r0c)r(Ū )K(T̄ )

(K(T̄ ) + r0cx̄)2
, R2 =

x̄2k1(1 + r0c)r(Ū )

(K(T̄ ) + r0cx̄)2
, R3 =

r1x̄(K(T̄ ) − x̄)

K(T̄ ) + r0cx̄
.

Now consider the following positive definite function

V11 =
1

2
n2

1 +N1
1

2
n2

2 +N2
1

2
n2

3 +N3
1

2
n2

4 +N4
1

2
n2

5 +N5
1

2
n2

6 +N6
1

2
n2

7

dV11

dt
= n1

dn1

dt
+N1n2

dn2

dt
+N2n3

dn3

dt
+N3n4

dn4

dt
+N4n5

dn5

dt
+N5n6

dn6

dt
+N6n7

dn7

dt

dV11

dt
= −R1n

2
1 − n2

2b1ȳN1 − n2
3N2(a2ȳβ2 − d2) − n2

4N3(δ0 + α1x̄)

−n2
5N4(δ1 + a1a3x̄ȳ) − n2

6δ2N5 − n2
7δ3N6 − n1n2(a2x̄− a1ȳN1β1)

−n1n4(R2 + α1T̄N3) − n1n5[R3 − (α1T̄ − a1a3ȳŪ)N4] + n1n6a1a3ȳŪN5

−n2n3a2ȳN1 − n2n5a1a3Ū x̄N4 − n2n6(β11ȳN1 − a1a3Ū x̄N5)

−n3n6a2a4V̄ ȳN5 + n3n7a2a4V̄ ȳN6 + n4n5x̄α1N4 + n5n6a1a3x̄ȳN5

Now using the sylvester’s criterion in the quadratic forms

dV11

dt
≤ −[((b11/2)n2

1 + b12n1n2 + (b22/2)n2
2) + ((b11/2)n2

1 + b14n1n4 + (b44/2)n2
4)

+((b11/2)n2
1 + b15n1n5 + (b55/2)n2

5) + ((b11/2)n2
1 − b16n1n6 + (b66/2)n2

6)

+((b22/2)n2
2 + b23n2n3 + (b33/2)n2

3) + ((b22/2)n2
2 + b25n2n5 + (b55/2)n2

5)

+((b22/2)n2
2 + b26n2n6 + (b66/2)n2

6) + ((b33/2)n2
3 + b36n3n6 + (b66/2)n2

6)

+((b33/2)n2
3 − b37n3n7 + (b77/2)n2

7) + ((b44/2)n2
4 − b45n4n5 + (b55/2)n2

5)

+((b55/2)n2
5 − b56n5n6 + (b66/2)n2

6)]

where,
b11 = R1/4, b12 = a2x̄− a1ȳN1β1, b14 = R2 + α1T̄N3, b15 = R3 − (α1T̄ − a1a3ȳŪ)N4, b16 = a1a3ȳŪN5,
b22 = b1ȳN1/4, b23 = a2ȳN1, b25 = a1a3Ū x̄N4, b26 = β11ȳN1−a1a3Ū x̄N5, b33 = N2(a2ȳβ2−d2)/3, b36 = a2a4V̄ ȳN5,
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b37 = a2a4V̄ ȳN6, b44 = N3(δ0 + α1x̄)/2, b45 = x̄α1N4, b55 = N4(δ1 + a1a3x̄ȳ)/4, b56 = a1a3x̄ȳN5, b66 = δ2N5/4,
b77 = δ3N6. Sufficient conditions for dV11/dt to be negative definite are that the following inequalities hold:

b33 > 0 (51)

b11b22 > b212 (52)

b11b44 > b214 (53)

b11b55 > b215 (54)

b11b66 > b216 (55)

b22b33 > b223 (56)

b22b55 > b225 (57)

b22b66 > b226 (58)

b33b66 > b236 (59)

b33b77 > b237 (60)

b44b55 > b245 (61)

b55b66 > b256 (62)

We note that the first, fourth, fifth, sixth, ninth and tenth inequalities, i.e., b11b22 > b212, b11b66 > b216, b22b33 > b223,
b22b55 > b225, b33b77 > b237 and b44b55 > b245 are satisfied due to the proper choice of N1, N2, N3, N4, N5 and N6 and
other inequalities, (39) ⇒ (53), (40) ⇒ (54), (41) ⇒ (58), (42) ⇒ (59), (43) ⇒ (62) and (44) ⇒ (51). Hence V11 is a
Lyapunov function with respect to Ē12, proving the theorem.

Theorem 4.2: If the following inequalities hold

8(R22 + α1T
∗Q3)

2 < R11Q3(δ0 + α1x
∗) (63)

20(R33 − (α1T
∗ − a1a3y

∗U∗)Q4)
2 < R11Q4(δ1 + a1a3x

∗y∗) (64)

25(a2Q1 − β2z
∗Q2)

2 < b1c3y
∗z∗Q1Q2 (65)

20Q4(a1a3x
∗U∗)2 < b1y

∗Q1(δ1 + a1a3x
∗y∗) (66)

25(β11y
∗Q1 − (a1a3x

∗U∗ − a2a4z
∗V ∗)Q5)

2 < b1y
∗Q1Q5(δ2 + a2a4y

∗z∗) (67)

15Q5(a2a4y
∗V ∗)2 < c3z

∗Q2(δ2 + a2a4y
∗z∗) (68)

15Q6(a2a4y
∗z∗)2 < δ3Q5(δ2 + a2a4y

∗z∗) (69)

where,

Q1 =
a2x

∗

a1β1y∗
(70)

Q2 =
a2a4y

∗V ∗Q6

β22z∗
(71)

Q3 >
8Q4(α1x

∗)2

(δ0 + α1x∗)(δ1 + a1a3x∗y∗)
(72)

Q4 >
20Q5(a1a3x

∗y∗)2

(δ1 + a1a3x∗y∗)(δ2 + a2a4y∗z∗)
(73)

Q5 <
R11(δ2 + a2a4y

∗z∗)

20(a1a3y∗U∗)2
(74)
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Q6 <
b1δ3Q1y

∗

15(a2a4V ∗y∗)2
(75)

R11 =
x∗(1 + r0c)r(U

∗)K(T ∗)

(K(T ∗) + r0cx∗)2
, R22 =

x∗2k1(1 + r0c)r(U
∗)

(K(T ∗) + r0cx∗)2
, R33 =

r1x
∗(K(T ∗) − x∗)

K(T ∗) + r0cx∗
,

then the positive equilibrium E∗
13 is locally asymptotically stable.

Proof: We first linearize the system about the equilibrium E∗
13 by using the following transformations

x = x∗ + n1; y = y∗ + n2; z = z∗ + n3; T = T ∗ + n4;
U = U∗ + n5; V = V ∗ + n6; W = W ∗ + n7;

where n1, n2, n3, n4, n5, n6 and n7 are small perturbations around E∗
13. Then we get the following linearized the

system,

dn1

dt
= −R11n1 − a2x

∗n2 −R22n4 −R33n5

dn2

dt
= a1β1y

∗n1 − b1y
∗n2 − a2y

∗n3 − β11y
∗n6

dn3

dt
= a2β2z

∗n2 − c3z
∗n3 − β22z

∗n7

dn4

dt
= −α1T

∗n1 − n4(δ0 + α1x
∗)

dn5

dt
= n1(α1T

∗ − a1a3y
∗U∗) − n2a1a3U

∗x∗ + α1x
∗n4 − n5(δ1 + a1a3x

∗y∗)

dn6

dt
= a1a3y

∗U∗n1 + n2(a1a3x
∗U∗ − a2a4z

∗V ∗) − a2a4V
∗y∗n3 + a1a3y

∗x∗n5

− n6(δ2 + a2a4y
∗z∗)

dn7

dt
= a2a4V

∗z∗n2 + a2a4V
∗y∗n3 + a2a4z

∗y∗n6 − δ3n7

where

R11 =
x∗(1 + r0c)r(U

∗)K(T ∗)

(K(T ∗) + r0cx∗)2
, R22 =

x∗2k1(1 + r0c)r(U
∗)

(K(T ∗) + r0cx∗)2
, R33 =

r1x
∗(K(T ∗) − x∗)

K(T ∗) + r0cx∗
.

Now consider the following positive definite function

V12 =
1

2
n2

1 +Q1
1

2
n2

2 +Q2
1

2
n2

3 +Q3
1

2
n2

4 +Q4
1

2
n2

5 + +Q5
1

2
n2

6 +Q6
1

2
n2

7

dV12

dt
= n1

dn1

dt
+Q1n2

dn2

dt
+Q2n3

dn3

dt
+Q3n4

dn4

dt
+Q4n5

dn5

dt
+Q5n6

dn6

dt
+Q6n7

dn7

dt

dV12

dt
= −R11n

2
1 − n2

2b1y
∗Q1 − n2

3c3z
∗Q2 − n2

4Q3(δ0 + α1x
∗) − n2

5Q4(δ1 + a1a3x
∗y∗)

−n2
6(δ2 + a2a4y

∗z∗)Q5 − n2
7δ3Q6 − n1n2(a2x

∗ − a1y
∗Q1β1)

−n1n4(R22 + α1T
∗Q3) − n1n5[R33 − (α1T

∗ − a1a3y
∗U∗)Q4]

+n1n6a1a3y
∗U∗Q5 − n2n3a2(y

∗Q1 − β2z
∗Q2) − n2n5a1a3U

∗x∗Q4

−n2n6(β11y
∗Q1 − (a1a3U

∗x∗ − a2a4V
∗z∗)Q5) + n2n7a2a4V

∗z∗Q6

−n3n6a2a4V
∗y∗Q5 − n3n7(β22z

∗Q2 − a2a4V
∗y∗)Q6 + n4n5x

∗α1Q4

+n5n6a1a3x
∗y∗Q5 + n6n7a2a4y

∗z∗Q6
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Now using the sylvester’s criterion in the quadratic forms

dV12

dt
≤ −[((e11/2)n2

1 + e12n1n2 + (e22/2)n2
2) + ((e11/2)n2

1 + e14n1n4 + (e44/2)n2
4)

+((e11/2)n2
1 + e15n1n5 + (e55/2)n2

5) + ((e11/2)n2
1 − e16n1n6 + (e66/2)n2

6)

+((e22/2)n2
2 + e23n2n3 + (e33/2)n2

3) + ((e22/2)n2
2 + e25n2n5 + (e55/2)n2

5)

+((e22/2)n2
2 + e26n2n6 + (e66/2)n2

6) + ((e22/2)n2
2 − e27n2n7 + (e77/2)n2

7)

+((e33/2)n2
3 + e36n3n6 + (e66/2)n2

6) + ((e33/2)n2
3 + e37n3n7 + (e77/2)n2

7)

+((e44/2)n2
4 − e45n4n5 + (e55/2)n2

5) + ((e55/2)n2
5 − e56n5n6 + (e66/2)n2

6)

+((e66/2)n2
6 − e67n6n7 + (e77/2)n2

7)]

where,
e11 = R11/4, e12 = a2x

∗ − a1y
∗Q1β1, e14 = R22 + α1T

∗Q3, e15 = R33 − (α1T
∗ − a1a3y

∗U∗)Q4, e16 = a1a3y
∗U∗Q5,

e22 = b1y
∗Q1/5, e23 = a2(y

∗Q1 − β2z
∗Q2), e25 = a1a3U

∗x∗Q4, e26 = β11y
∗Q1 − (a1a3U

∗x∗ − a2a4V
∗z∗)Q5,

e27 = a2a4V
∗z∗Q6, e33 = c3z

∗Q2/3, e36 = a2a4V
∗y∗Q5, e37 = (β22z

∗Q2 − a2a4V
∗y∗)Q6, e44 = Q3(δ0 + α1x

∗)/2,
e45 = x∗α1Q4, e55 = Q4(δ1 + a1a3x

∗y∗)/4, e56 = a1a3x
∗y∗Q5, e66 = (δ2 + a2a4y

∗z∗)Q5/5, e67 = a2a4y
∗z∗Q6,

e77 = δ3Q6/3. Sufficient conditions for dV12/dt to be negative definite are that the following inequalities hold:

e11e22 > e212 (76)

e11e44 > e214 (77)

e11e55 > e215 (78)

e11e66 > e216 (79)

e22e33 > e223 (80)

e22e55 > e225 (81)

e22e66 > e226 (82)

e22e77 > e227 (83)

e33e66 > e236 (84)

e33e77 > e237 (85)

e44e55 > e245 (86)

e55e66 > e256 (87)

e66e77 > e267 (88)

We note that the first, fourth, eighth, tenth, eleventh and twelfth inequalities, i.e., e11e22 > e212, e11e66 > e216,
e22e77 > e227, e33e77 > e237, e44e55 > e245 and e55e66 > e256 are satisfied due to the proper choice of Q1, Q2, Q3, Q4,
Q5 and Q6 and other inequalities, (63) ⇒ (77), (64) ⇒ (78), (65) ⇒ (80), (66) ⇒ (81), (67) ⇒ (82), (68) ⇒ (84)
and (69) ⇒ (88). Hence V12 is a Lyapunov function with respect to E∗

13, proving the theorem.

Theorem 4.3: If the following inequalities hold in the region Ω1

8(π3 + α1TlL3)
2 < π1L3(δ0 + α1x

∗) (89)

16(π2 − L4(α1T
∗ − a1a3Uly

∗))2 < π1L4(δ1 + a1a3x
∗y∗) (90)

20L4(a1a3xlUl)
2 < L1(δ1 + a1a3x

∗y∗)[d1 + b1(yu + y∗) − a1β1xl + a2zu + β11V
∗] (91)

25[β11ylL1 − L5(a1a3U
∗xu − a2a4Vlz

∗)]2

< L1L5(δ2 + a2a4y
∗z∗)[d1 + b1(yu + y∗) − a1β1xl + a2zu + β11V

∗] (92)

15L6(a2a4Vlz
∗)2 < δ2L1[d1 + b1(yu + y∗) − a1β1xl + a2zu + β11V

∗] (93)

15L5(a2a4Vlyl)
2 < L2(δ2 + a2a4y

∗z∗)[d2 + c3(zu + z∗) − a2β2yl + β22Wu] (94)
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9(L2β22z
∗ − a2a4VuyuL6)

2 < δ2L2L6[d2 + c3(zu + z∗) − a2β2yl + β22Wu] (95)

where

L1 =
1

β1y∗
(96)

L2 =
a2y

∗L1

a2zuβ2
(97)

L3 >
8L4(α1xl)

2

(δ0 + α1x∗)(δ1 + a1a3x∗y∗)
(98)

L4 >
20L5(a1a3xlyl)

2

(δ1 + a1a3x∗y∗)(δ2 + a2a4y∗z∗)
(99)

L5 <
π1(δ2 + a2a4y

∗z∗)

20(a1a3y∗U∗)2
(100)

L6 <
L1δ2(δ2 + a2a4y

∗z∗)

15(a2a4y∗z∗)2
(101)

π1 = (1+r0c)K(T∗)r(U∗)
(K(T∗)+r0cx∗)(K(Tl)+r0cxl)

, π2 = K(T∗)(k0+r0cx∗−x∗)+k1T∗(k1Tl−k0)−r0cxux∗

(K(T∗)+r0cx∗)(K(Tu)+r0cxu) ,

π3 = k1x∗r(U∗)+r0ck1x∗r(Ul)+r1k0k1(U
∗−Uu)

(K(T∗)+r0cx∗)(K(Tu)+r0cxu) , then the positive equilibrium E∗
13 is globally asymptotically stable with

respect to all solutions initiating in the interior of positive region Ω1.

Proof: We consider the following positive definite function about E∗
13:

V13 = (x−x∗−x∗ln( x
x∗

))+ L1

2 (y− y∗)2 + L2

2 (z− z∗)2 + L3

2 (T −T ∗)2 + L4

2 (U −U∗)2 + L5

2 (V −V ∗)2 + L6

2 (W −W ∗)2

Differentiating V13 with respect to time t, we get

dV13

dt
= (x−x∗

x
)dx

dt
+L1(y−y∗)dy

dt
+L2(z−z∗)dz

dt
+L3(T −T ∗)dT

dt
+L4(U−U∗)dU

dt
+L5(V −V ∗)dV

dt
+L6(W −W ∗)dW

dt

dV13

dt
= −(x− x∗)2π1 − (y − y∗)2L1[d1 + b1(yu + y∗) − a1β1xl + a2zu + β11V

∗]

−(z − z∗)2L2[d2 + c3(zu + z∗) − a2β2yl + β22Wu] − (T − T ∗)2L3(δ0 + α1x
∗)

−(U − U∗)2L4(δ1 + a1a3x
∗y∗) − (V − V ∗)2L5(δ2 + a2a4y

∗z∗)

−(W −W ∗)2L6δ2 − (x− x∗)(y − y∗)a1(1 − L1β1y
∗)

−(x− x∗)(T − T ∗)(π3 + α1TlL3) + (x− x∗)(V − V ∗)a1a3U
∗y∗L5

−(x− x∗)(U − U∗)(π2 − L4(α1T
∗ − a1a3Uly

∗))

−(y − y∗)(z − z∗)(a2y
∗L1 − L2a2β2z) − (y − y∗)(U − U∗)a1a3L4Ux

−(y − y∗)(V − V ∗)[β11ylL1 − L5(a1a3U
∗xu − a2a4Vlz

∗)]

+(y − y∗)(W −W ∗)a2a4V z
∗L6 − (z − z∗)(V − V ∗)a2a4yV L5

+(z − z∗)(W −W ∗)(L2β22z
∗ − a2a4V yL6) + (T − T ∗)(U − U∗)xα1L4

+(U − U∗)(V − V ∗)a1a3xyL5 + (V − V ∗)(W −W ∗)a2a4y
∗z∗L6
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Now using the sylvester’s criterion in the quadratic forms

dV13

dt
≤ −[((f11/2)(x− x∗)2 + f12(x− x∗)(y − y∗) + (f22/2)(y − y∗)2)

+((f11/2)(x− x∗)2 + f14(x− x∗)(T − T ∗) + (f44/2)(T − T ∗)2)

+((f11/2)(x− x∗)2 + f15(x− x∗)(U − U∗) + (f55/2)(U − U∗)2)

+((f11/2)(x− x∗)2 − f16(x− x∗)(V − V ∗) + (f66/2)(V − V ∗)2)

+((f22/2)(y − y∗)2 + f23(y − y∗)(z − z∗) + (f33/2)(z − z∗)2)

+((f22/2)(y − y∗)2 + f25(y − y∗)(U − U∗) + (f55/2)(U − U∗)2)

+((f22/2)(y − y∗)2 + f26(y − y∗)(V − V ∗) + (f66/2)(V − V ∗)2)

+((f22/2)(y − y∗)2 − f27(y − y∗)(W −W ∗) + (f77/2)(W −W ∗)2)

+((f33/2)(z − z∗)2 + f36(z − z∗)(V − V ∗) + (f66/2)(V − V ∗)2)

+((f33/2)(z − z∗)2 + f37(z − z∗)(W −W ∗) + (f77/2)(W −W ∗)2)

+((f44/2)(T − T ∗)2 − f45(T − T ∗)(U − U∗) + (f55/2)(U − U∗)2)

+((f55/2)(U − U∗)2 − f56(U − U∗)(V − V ∗) + (f66/2)(V − V ∗)2)

+((f66/2)(V − V ∗)2 − f67(V − V ∗)(W −W ∗) + (f77/2)(W −W ∗)2)]

where,
f11 = π1/4, f12 = a1(1 − L1β1y

∗), f14 = π3 + α1TL3, f15 = π2 − L4(α1T
∗ − a1a3Uy

∗), f16 = a1a3U
∗y∗L5,

f22 = L1[d1 + b1(y + y∗) − a1β1x+ a2z + β11V
∗]/5, f23 = a2y

∗L1 − L2a2β2z, f25 = a1a3L4Ux,
f26 = β11yL1 − L5(a1a3U

∗x− a2a4V z
∗), f27 = a2a4V z

∗L6, f33 = L2[d2 + c3(z + z∗) − a2β2y + β22W ]/3,
f36 = a2a4V yL5, f37 = L2β22z

∗ − a2a4V yL6, f44 = (L3/2)(δ0 + α1x
∗), f45 = xα1L4, f55 = (L4/4)(δ1 + a1a3x

∗y∗),
f56 = a1a3xyL5, f66 = (L5/5)(δ2 + a2a4y

∗z∗), f67 = a2a4y
∗z∗L6, f77 = δ2L6/3, π1 = 1

M11

(1 + rc)K(T ∗)r(U∗),

π2 = 1
M11

(K(T ∗)(k0 + rcx∗−x∗)+ k1T
∗(k1T − k0)− rcxx∗), π3 = 1

M11
(k1x

∗r(U∗)+ rck1x
∗r(U)+ r1k0k1(U

∗−U)),
M11 = (K(T ∗) + rcx∗)(K(T ) + rcx)
Sufficient conditions for dV13/dt to be negative definite are that the following inequalities hold:

f11f22 > f2
12 (102)

f11f44 > f2
14 (103)

f11f55 > f2
15 (104)

f11f66 > f2
16 (105)

f22f33 > f2
23 (106)

f22f55 > f2
25 (107)

f22f66 > f2
26 (108)

f22f77 > f2
27 (109)

f33f66 > f2
36 (110)

f33f77 > f2
37 (111)

f44f55 > f2
45 (112)

f55f66 > f2
56 (113)

f66f77 > f2
67 (114)

We note that the first, fourth, fifth, eleventh, twelfth and thirteenth inequalities, i.e., f11f22 > f2
12, f11f66 > f2

16,
f22f33 > f2

23, f44f55 > f2
45, f55f66 > f2

56 and f66f77 > f2
67 are satisfied due to the proper choice of L1, L2, L3, L4, L5

and L6 and other inequalities, (89) ⇒ (103), (90) ⇒ (104), (91) ⇒ (107), (92) ⇒ (108), (93) ⇒ (109), (94) ⇒ (110)
and (95) ⇒ (111). Hence V13 is a Lyapunov function with respect to E∗

13, whose domain contains the region of
attraction Ω1, proving the theorem.

5. Numerical Simulation

In this section, we demonstrate the dynamical behaviour of a three species food chain system with “food-limited”
growth of prey population with and without toxicant with the help of numerical simulations to facilitate the
interpretation of our mathematical findings. The figures illustrate the stability behaviour of all the equilibrium
points of the models for the given sets of parameters and the graphs have been plotted with the help of MATLAB.
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5.1. Numerical Simulation for Sub-Model

We choose the following values of parameters for Ě21:
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Fig.1: Time series graph for the Sub-Model around the equilibrium point Ě21 = (x̌, 0, 0) showing the stability
behavior.
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Fig.2: Time series graph for the Sub-Model around the equilibrium point Ē22 = (x̄, ȳ, 0) showing the stability
behavior.

r0 = 5.8, c = 4.0, β1 = 0.011, a1 = 2.11, d1 = 1.28, c3 = 1.9850,
k0 = 6.0, b1 = 0.124, β2 = 0.018, a2 = 0.051, d2 = 2.0295.

It is found that under the above set of parameters, the equilibrium point Ě21

x̌ = 6.0, y̌ = 0.0, ž = 0.0

is locally asymptotically stable (see Fig.1).
We choose the following values of parameters for Ē22:

r0 = 6.0, b1 = 1.124, β1 = 0.83, a1 = 1.4671, d1 = 0.678, c3 = 2.9830,
k0 = 16.2, c = 4.58, β2 = 0.18, a2 = 0.8870, d2 = 0.695.

It is found that under the above set of parameters, the equilibrium point Ē22

x̄ = 1.5156, ȳ = 1.0385, z̄ = 0.0
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is locally asymptotically stable (see Fig.2).
We choose the following values of parameters for E∗

23:
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Fig.3: Time series graph for the Sub-Model around the equilibrium point E∗
23 = (x∗, y∗, z∗) showing the stability

behavior.

r0 = 6.8, b1 = 1.124, β1 = 1.02, a1 = 1.9672, d1 = 0.58, c3 = 1.9830,
k0 = 16.21, c = 4.58, β2 = 1.6, a2 = 0.9970, d2 = 0.049.

It is found that under the above set of parameters, the equilibrium point E∗
23

x∗ = 1.2039, y∗ = 0.9657, z∗ = 0.7522

is locally asymptotically stable (see Fig.3).

5.2. Numerical Simulation for Main Model

We choose the following values of parameters for Ě11:
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Fig.4: Time series graph for the Main Model around the equilibrium point Ě11(x̌, 0, 0, Ť , Ǔ , 0, 0) showing the
stability behavior.

r0 = 3.05, c = 5.58, β1 = 0.2, a1 = 2.22, δ0 = 5.52, Q0 = 1.988,
r1 = 17.0, c3 = 0.02, β11 = 1.1, a2 = 0.9813, δ1 = 2.2, d1 = 2.45,
k0 = 8.2, α1 = 0.31, β2 = 1.6, a3 = 2.865, δ2 = 5.890, d2 = 0.49,
k1 = 6.0, b1 = 1.1231, β22 = 1.15, a4 = 4.21, δ3 = 2.13,
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It is found that under the above set of parameters, the equilibrium point Ě11

x̌ = 4.4111, y̌ = 0, ž = 0, Ť = 0.2890, Ǔ = 0.1793, V̌ = 0, W̌ = 0

is locally asymptotically stable (see Fig.4).
We choose the following values of parameters for Ē12:
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Fig.5: Time series graph for the Main Model around the equilibrium point Ē12(x̄, ȳ, 0, T̄ , Ū , V̄ , 0) showing the
stability behavior.

r0 = 5.00, c3 = 0.02, β1 = 0.4, a1 = 3.22, δ0 = 5.82, Q0 = 1.988,
r1 = 11.0, c = 5.58, β11 = 1.01, a2 = 0.9913, δ1 = 2.0, d1 = 0.35,
k0 = 14.2, α1 = 1.31, β2 = 0.6, a3 = 2.865, δ2 = 1.9890, d2 = 0.5,
k1 = 3.0, b1 = 1.0231, β22 = 1.15, a4 = 4.21, δ3 = 2.9,

It is found that under the above set of parameters, the equilibrium point Ē12

x̄ = 0.8057, ȳ = 0.4774, z̄ = 0, T̄ = 0.2892, Ū = 0.0549, V̄ = 0.1974, W̄ = 0

is locally asymptotically stable (see Fig.5).
We choose the following values of parameters for E∗

13:
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Fig.6: Time series graph for the Main Model around the equilibrium point E∗
13(x

∗, y∗, z∗, T ∗, U∗, V ∗,W ∗) showing
the stability behavior.
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r0 = 5.66, c3 = 1.02, β1 = 1.2, a1 = 3.22, δ0 = 7.52, Q0 = 2.988,
r1 = 11.0, c = 4.25, β11 = 1.1, a2 = 2.13, δ1 = 2.5, d1 = 1.45,
k0 = 16.2, α1 = 2.12, β2 = 1.6, a3 = 2.865, δ2 = 3.99, d2 = 1.49,
k1 = 3.0, b1 = 1.231, β22 = 1.15, a4 = 4.21, δ3 = 1.3,

It is found that under the above set of parameters, the equilibrium point E∗
13

x∗ = 0.8320, y∗ = 0.6076, z∗ = 0.4477, T ∗ = 0.3218,
U∗ = 0.0793, V ∗ = 0.0574, W ∗ = 0.1079

is locally asymptotically stable (see Fig.6).
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Fig.7: Time series graph of Prey population for Sub-Model and Main Model around the equilibrium points
Ě21 = (x̌, 0, 0) and Ě11(x̌, 0, 0, Ť , Ǔ , 0, 0).
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Fig.8: Time series graph of Prey and Intermediate Predator populations for Sub-Model and Main Model around
the equilibrium points Ē22 = (x̄, ȳ, 0) and Ē12(x̄, ȳ, 0, T̄ , Ū , V̄ , 0).
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Fig.9: Time series graph of Prey, Intermediate Predator and Top Predator populations for Sub-Model and Main
Model around the equilibrium points E∗

23 = (x∗, y∗, z∗) and E∗
13(x

∗, y∗, z∗, T ∗, U∗, V ∗,W ∗).
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Fig.10: Variation of x, y and z with respect to time t, corresponding to different values of c in Main Model.

6. Conclusion

In this paper we have proposed and analyzed a nonlinear mathematical model for the effect of toxicant in a three
species food-chain system with “food-limited” growth of prey population. It is concluded from the stability of Ě11

of Main Model that only the prey population will survive and intermediate predator and top predator populations
would tend to extinction. From the stability of Ě21 of Sub-Model we derive the same dynamical behavior of prey
and predator populations as observed for Ě11 of Main Model with the only difference that equilibrium level of prey
population is reduced due to the presence of toxicant (see Figs.1, 4 and 7). It is concluded from the stability of
Ē12 of Main Model that the prey population and intermediate predator populations will survive and top predator
population would tend to extinction. From the stability of Ē22 of Sub-Model we derive the same dynamical behavior
of prey and predator populations as observed for Ē12 of Main Model with the only difference that equilibrium levels
of prey and intermediate predator populations are reduced due to the presence of toxicant (see Figs.2, 5 and 8).
The interior equilibrium points of both the models are locally and also globally stable showing the co-existence of
all the three populations of prey and predator species. However, from the equilibrium values it is seen that the
equilibrium density of top predator reduces due to the presence of toxicant in prey and intermediate predator (see
Figs.3, 6 and 9). It may be also noted from the equilibrium of the intermediate predator population that the level
of intermediate predator population may increase due to the decrease in the top predator density on account of
toxicant (see Figs.9, 12, 14).

From Table 1, it may be observed that if we increase the toxicant input rate then both the predators may tend
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Fig.11: Variation of x, y and z with respect to time t, corresponding to different values of β11 in Main Model.
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Fig.12: Variation of x, y and z with respect to time t, corresponding to different values of β22 in Main Model.

to extinction and if we decrease the toxicant input rate then the equilibria of all the three species will increase.
Further, it may be noted from Table 1 that at a particular value (c = 4.25) of food-limited parameter, all the three
species will survive but in the presence of toxicant the top predator may die out. Also, it may be pointed out from
Table 1 that at particular value (Q0 = 2.988) of toxicant input rate all the three species will survive but if we
increase the value of food-limited parameter then the top predator may die out.

From Figs.7, 8 and 9, it is observed that in all three cases of equilibria, the densities of prey and predator
populations decrease in the presence of toxicant in the system. From Fig.10, it is noted that as the value of
food-limited parameter increases the equilibrium levels of all the three species decrease and for a particular value
(c = 15.25), the top predator even may die out. From Fig.11, it is observed that as the value of the death rate
of intermediate predator due to toxicant increases, the equilibrium level of prey population increases due to the
decrease in the intermediate predator population and the equilibrium levels of predator populations decrease and at
a particular value (β11 = 24.1), the top predator even may die out. From Fig.12, it is observed that as the value of
the death rate of top predator due to toxicant increases, the equilibrium level of prey and top predator populations
decrease and intermediate predator population increases due to the decrease in top predator for which intermediate
predator is prey. From Fig.13, it is noted that as the toxicant input rate into the environment increases, then the
equilibrium level of all the three species decrease and for a particular value (Q0 = 9.988), the predator populations
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Table 1: Simulation experiments of main model for different values of parameters c, β11, β22, Q0 and a4.

Figs. Parameter Equilibrium Values of
x y z

Fig.10 c=04.25 0.8320, 0.6076, 0.4477
c=10.25 0.5571, 0.4525, 0.0442
c=15.25 0.5021, 0.3647, 0.0000

Fig.11 β11=01.1 0.8320, 0.6076, 0.4477
β11=16.1 1.0246, 0.5169, 0.1952
β11=24.1 1.3746, 0.3983, 0.0000

Fig.12 β22=01.15 0.8320, 0.6076, 0.4477
β22=16.15 0.6934, 0.6901, 0.1455
β22=24.15 0.6751, 0.7024, 0.1042

Fig.13 Q0=02.988 0.8320, 0.6076, 0.4477
Q0=06.988 0.6351, 0.4915, 0.1226
Q0=09.988 0.5194, 0.3398, 0.0000
Q0=14.988 0.3330, 0.0000, 0.0000

Fig.15 Q0=2.988 0.8320, 0.6076, 0.4477
Q0=1.988 0.8851, 0.6294, 0.5417
Q0=0.988 0.9418, 0.6479, 0.6437

Fig.14 a4=04.21 0.8320, 0.6076, 0.4477
a4=08.21 0.8181, 0.6152, 0.4258
a4=16.21 0.8050, 0.6224, 0.4053

Fig.16 c=04.25, β11=01.1 0.8320, 0.6076, 0.4477
c=10.25, β11=16.1 0.7496, 0.3431, 0.0000

Fig.17 c=04.25, β22=01.15 0.8320, 0.6076, 0.4477
c=10.25, β22=16.15 0.5374, 0.4667, 0.0000

Fig.18 c=04.25, Q0=02.988 0.8320, 0.6076, 0.4477
c=10.25, Q0=06.988 0.4981, 0.3149, 0.0000
c=15.25, Q0=09.988 0.4305, 0.1315, 0.0000
c=24.24, Q0=14.988 0.3330, 0.0000, 0.0000

may even die out. On the other hand if the toxicant input rate decreases then the equilibria of all the population
would increase (see Fig.15). From Fig.14, it is observed that as the toxicant transfer rate from intermediate predator
to top predator increases, the equilibrium levels of prey and top predator populations decrease and intermediate
predator population increases and this may happen because of the decrease in top predator population density.
From Fig.16, it is noted that as the values of food-limited parameter c and the death rate of intermediate predator
due to toxicant β11, simultaneously increases then the equilibrium levels of all the three species decrease and for
particular values of c and β11 (c = 10.25, β11 = 16.1), the top predator may even die out. From Fig.17, it is
observed that as the values of food-limited parameter c and the death rate of top predator due to toxicant β22,
simultaneously increases then the equilibrium levels of all the three species decrease and for particular values of c
and β22 (c = 10.25, β22 = 16.15), the top predator may even die out. From Fig.18, the synergistic adverse effect of
food-limited parameter c and the toxicant input rate Q0 on all the populations in the system is observed. Because,
it may be noted from Table 1 that when both the parameters, i.e., c and Q0 increase then the equilibrium levels
of prey, intermediate predator and top predator decrease more as compared to the equilibrium levels thus obtained
after increasing c and Q0 separately.
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Fig.13: Variation of x, y and z with respect to time t, corresponding to increasing values of Q0 in Main Model.
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Fig.16: The values of x, y and z with respect to time t when c and β11 are simultaneously increased in the case of
Main Model.
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Fig.17: The values of x, y and z with respect to time t when c and β22 are simultaneously increased in the case of
Main Model.
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Fig.18: The values of x, y and z with respect to time t when c and Q0 are simultaneously increased in the case of
Main Model.
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