
Global Journal of Mathematical Analysis, 2 (3) (2014) 146-151
c©Science Publishing Corporation
www.sciencepubco.com/index.php/GJMA
doi: 10.14419/gjma.v2i3.2989
Research paper

Majorization problems for p−valently
meromorphic functions of complex order

involving certain integral operator
T. Janani and G. Murugusundaramoorthy *

School of Advanced Sciences, VIT University, Vellore 632014, Tamilnadu, India
*Corresponding author Email: gmsmoorthy@yahoo.com

Abstract

The main object of this paper is to investigate the problem of majorization of certain class of meromorphic p-valent
functions of complex order involving certain integral operator. Moreover we point out some new or known conse-
quences of our main result.
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1 Introduction

Let f and g are analytic functions in the unit disc ∆ = {z ∈ C : |z| < 1}. Due to MacGregor [8], (also see [7]) we
say that f is majorized by g in ∆ and we write

f(z) ¿ g(z), (z ∈ ∆) (1)

if there exists a function φ, analytic in ∆, such that

|φ(z)| < 1 and f(z) = φ(z)g(z), z ∈ ∆. (2)

It may be noted here that (1) is closely related to the concept of quasi-subordination between analytic functions.
Also we say that f is subordinate to g denoted by f ≺ g (see [9]), if there exists a Schwarz function ω which is

analytic in ∆ with ω(0) = 0 and |ω(z)| < 1 for all z ∈ ∆, such that

f(z) = g(ω(z)), z ∈ ∆.

We denote this subordination by f ≺ g. Furthermore, if the function g is univalent in ∆, we have

f ≺ g ⇐⇒ f(0) = g(0) and f(∆) ⊂ g(∆).

Denote by S∗(γ) and C(γ) the class of starlike and convex functions of complex order γ(γ ∈ C \ {0}), satisfying
the following conditions

f(z)
z

6= 0 and <
(

1 +
1
γ

[
zf ′(z)
f(z)

− 1
])

> 0
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and

f ′(z) 6= 0 and <
(

1 +
1
γ

[
zf ′′(z)
f ′(z)

])
> 0, (z ∈ ∆)

respectively. Further,
S∗((1− δ)cosλ e−iλ) = S∗(δ, λ), |λ| < π

2
; 0 ≤ δ ≤ 1

the class of λ− spiral-like function of order δ investigated by Libera [4] and

S∗(cosλ e−iλ) = S∗(λ), |λ| < π

2
;

the class of spiral-like functions introduced by Spacek [10]( also see [11]).
A mojorization problem for the class of analytic starlike functions have been investigated by MacGregor [8] and

Altintas et al. [1]. Recently Goyal and Goswami [3] extended these results for the class of meromorphic functions
making use of certain integral operator.

Let Σp be the class of p−valently meromorphic functions which are analytic and univalent in the punctured unit
disk

∆∗ = {z ∈ C : 0 < |z| < 1} = ∆ \ {0}
of the form

f(z) =
1
zp

+
∞∑

n=1

an−pz
n−p. (3)

with a simple pole at the origin.
Due to Aqlan et al. [2] (see [5]), we recall the integral operator J α

β,p for meromorphic functions f ∈ Σp as given
below,

J α
β,p : Σp → Σp

J α
β,pf(z) =

(
α + β − 1

β − 1

)
1

zp+β

z∫

0

(1− t

z
)α−1 tβ+p−1f(t) dt (4)

J α
β,pf(z) =





f(z) α = 0, β > −1, p ∈ N, f ∈ Σp

1
zp + Γ(α+β)

Γ(β)

∞∑
n=1

Γ(n+β)
Γ(n+α+β)an−pz

n−p, α > 0, β > −1, p ∈ N, f ∈ Σp.
(5)

The following relation for J α
β,pf(z) can be obtained by simple calculation,

z(J α
β,pf(z))′ = (α + β − 1)J α−1

β,p f(z)− (α + β + p− 1)J α
β,pf(z). (6)

Using (6), the below recurrence relation for J α
β,pf(z) can be obtained easily,

z(J α
β,pf(z))(q+1) = (α + β − 1)(J α−1

β,p f(z))(q) − (α + β + p + q − 1)(J α
β,pf(z))(q). (7)

In the present paper we investigate a majorization problem for the class of p−valently meromorphic starlike
functions of complex order associated with the generalized integral operator due to Aqlan [2] and Murugusun-
daramoorthy and Magesh [6].

Definition 1.1. A function f(z) ∈ Σp is said to in the class Mp,q
α,β(γ, A,B) of meromorphic functions of complex

order γ 6= 0 in ∆∗ if and only if

1− 1
γ

[
z(J α

β,pf(z))(q+1)

(J α
β,pf(z))(q)

+ p + q

]
≺ 1 + Az

1 + Bz
, (8)

where z ∈ ∆∗, p, q ∈ N0 = N ∪ {0}, β > −1, α > 0, γ ∈ C \ {0} and −1 ≤ B < A ≤ 1.
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For simplicity, we put
Mp,q

α,β(γ, 1,−1) = Mp,q
α,β(γ),

where Mp,q
α,β(γ) denote the class of functions f ∈ Σp satisfying the following inequality:

<
(

1− 1
γ

[
z(J α

β,pf(z))(q+1)

(J α
β,pf(z))(q)

+ p + q

])
> 0 (9)

where z ∈ ∆∗, p, q ∈ N0 = N ∪ {0}, β > −1, α > 0, γ ∈ C \ {0}.
Example 1.2. Putting γ = (p− δ)cosλ e−iλ, |λ| < π

2 ; 0 ≤ δ < p the class

Mp,q
α,β(γ) = Mp,q

α,β((p− δ)cosλ e−iλ) ≡Mp,q
α,β(δ, λ)

called the generalized class of λ−spiral-like functions of order δ(0 ≤ δ < p) if

<
(

eiλ

[
z(J α

β,pf(z))(q+1)

(J α
β,pf(z))(q)

+ q

])
< −δ cosλ (10)

where z ∈ ∆∗, p, q ∈ N0 = N ∪ {0}, β > −1, α > 0, γ ∈ C \ {0}.
Example 1.3. Putting γ = (p− δ); 0 ≤ δ < p the class Mp,q

α,β(p− δ) ≡Mp,q
α,β(δ), the generalized class of p−valently

meromorphic starlike functions of order δ(0 ≤ δ < p) if

<
(

z(J α
β,pf(z))(q+1)

(J α
β,pf(z))(q)

+ q

)
< −δ (11)

where z ∈ ∆∗, p, q ∈ N0 = N ∪ {0}, β > −1, α > 0, γ ∈ C \ {0}.
Remark 1.4. By taking q = 0 in Example 1.3, Mp,0

α,β(p − δ) ≡ Mp
α,β(δ) the class of p−valently meromorphic

starlike functions of order δ(0 ≤ δ < p) if

<
(

z(J α
β,pf(z))′

(J α
β,pf(z))

)
< −δ

where z ∈ ∆∗, β > −1, α > 0, γ ∈ C \ {0}.

2 Majorization problem for the class Mp,q
α,β(γ, A, B)

Theorem 2.1. Let the function f ∈ Σp and g ∈Mp,q
α,β(γ,A, B) if (J α

β,pf(z))(q) is majorized by (J α
β,pg(z))(q) in ∆∗

then

|(J α−1
β,p f(z))(q)| ≤ |(J α−1

β,p g(z))(q)|, |z| ≤ r1, (12)

r1 = r1(A, B, α, β, γ, ρ) is the smallest positive root of the equation

|(α + β − 1)B − γ(A−B)| r3 − {(α + β − 1) + 2ρ|B| } r2

− {|(α + β − 1)B − γ(A−B)|+ 2ρ} r + (α + β − 1) = 0, (13)

where z ∈ ∆∗, p, q ∈ N0 = N ∪ {0}, β > −1, α > 0, γ ∈ C \ {0} and −1 ≤ B < A ≤ 1.

Proof. Since g(z) ∈Mp,q
α,β(γ, A,B), we readily obtain from (8) that, if

1− 1
γ

[
z(J α

β,pg(z))(q+1)

(J α
β,pg(z))(q)

+ p + q

]
=

1 + Aw(z)
1 + Bw(z)

(14)

where w denotes the well known class of bounded analytic functions in ∆ and

w(0) = 0 and |w(z)| ≤ |z|, (z ∈ ∆). (15)
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From (14),we get

z(J α
β,pg(z))(q+1)

(J α
β,pg(z))(q)

= − (p + q) + [(p + q)B + γ(A−B)]w(z)
1 + Bw(z)

. (16)

Using (7) in the above equation, we get,

(J α
β,pg(z))(q) =

(α + β − 1)[1 + Bw(z)]
(α + β − 1) + [(α + β − 1)B − γ(A−B)] w(z)

(J α−1
β,p g(z))(q). (17)

Hence, by making use of (15), we get,

|(J α
β,pg(z))(q)| ≤ (α + β − 1)[1 + |B| |z|]

(α + β − 1)− |(α + β − 1)B − γ(A−B)| |z| |(J
α−1
β,p g(z))(q)|. (18)

Since (J α
β,pf(z))(q) is majorized by (J α

β,pg(z))(q) in ∆∗ from (2), we have

(J α
β,pf(z))(q) = φ(z)(J α

β,pg(z))(q)

Differentiating the above equation w.r.t z and multiplying by z, we have,

z(J α
β,pf(z))(q+1) = zφ′(z)(J α

β,pg(z))(q) + zφ(z)(J α
β,pg(z))(q+1).

By using (7), we get,

(J α−1
β,p f(z))(q) =

z

α + β − 1
φ′(z)(J α

β,pg(z))(q) + φ(z)(J α−1
β,p g(z))(q). (19)

Noting that the Schwarz function φ(z) satisfies

|φ′(z)| ≤ 1− |φ(z)|2
1− |z|2 (20)

and using (18) and (20) in (19) we have

|(J α−1
β,p f(z))(q)|

≤
(
|φ(z)|+ (1−|φ(z)|2)

(1−|z|2) · |z| (1+|B| |z|)
(α+β−1)−|(α+β−1)B−γ(A−B)| |z|

)
|(J α−1

β,p g(z))(q)|
which upon setting

|z| = r and |φ(z)| = ρ, (0 ≤ ρ ≤ 1)

leads us to the inequality

|(J α−1
β,p f(z))(q)| ≤ θ(ρ)

(1− r2){(α + β − 1)− |(α + β − 1)B − γ(A−B)|r} |(J
α−1
β,p g(z))(q)|, (21)

where

θ(ρ) = ρ(1− r2){ (α + β − 1)− |(α + β − 1)B − γ(A−B)| r}+ (1− ρ2)(1 + |B| r)r

takes its maximum value at ρ = 1. Furthermore, if 0 ≤ σ ≤ r1, the function ϕ(ρ) defined by

ϕ(ρ) = ρ(1− σ2){ (α + β − 1)− |(α + β − 1)B − γ(A−B)| σ}+ (1− ρ2)(1 + |B| σ)σ

is an increasing function on (0 ≤ ρ ≤ 1) so that

ϕ(ρ) ≤ ϕ(1) = (1− σ2){ (α + β − 1)− |(α + β − 1)B − γ(A−B)| σ}. (22)

Therefore, from this fact, (21) gives the inequality (12).
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3 Corollaries and Concluding Remarks

By taking A = 1;B = −1 and ρ = 1 in Theorem 2.1, we state the following corollary without proof.

Corollary 3.1. Let the function f ∈ Σp and g(z) ∈ Mp,q
α,β(γ) if (J α

β,pf(z))(q) is majorized by (J α
β,pg(z))(q) in ∆∗

then

|(J α−1
β,p f(z))(q)| ≤ |(J α−1

β,p g(z))(q)|, |z| ≤ r2,

where r2 = r2(α, β, γ) is the smallest positive root of the equation

{|(α + β − 1) + 2γ|r3 − {α + β + 1}r2 − {|(α + β − 1) + 2γ|+ 2}r + (α + β − 1) = 0, given by

r2 =
L1 −

√
L2

1 − 4|α + β − 1 + 2γ|(α + β − 1)
2|α + β − 1 + 2γ|

and L1 = α + β + 1 + |α + β − 1 + 2γ|.
By setting α = 1 in Corollary 3.1, we state the following corollary.

Corollary 3.2. Let the function f ∈ Σp and g(z) ∈ Mp,q
α,β(γ) if (J 1

β,pf(z))(q) is majorized by (J 1
β,pg(z))(q) in ∆∗

then

|(f(z))(q)| ≤ |(g(z))(q)|, |z| ≤ r3,

where r3 = r3(1, β, γ) is the smallest positive root of the equation

|β + 2γ|r3 − (β + 2)r2 − {|β + 2γ|+ 2}r + β = 0, given by

r3 =
L2 −

√
L2

2 − 4β|β + 2γ|
2|β + 2γ|

and L2 = β + 2 + |β + 2γ|.
By setting α = 1, β = 1 and γ = p− δ in Corollary 3.1, we state the following corollary.

Corollary 3.3. Let the function f ∈ Σp and g(z) ∈ Mp,q
α,β(δ) if (J 1

1,pf(z))(q) is majorized by (J 1
1,pg(z))(q) in ∆∗

then

|(f(z))(q)| ≤ |(g(z))(q)|, |z| ≤ r4,

where r4 = r4(1, 1, (p− δ)1) is the smallest positive root of the equation

|1 + 2(p− δ)|r3 − 3r2 − {|1 + 2(p− δ)|+ 2}r + 1 = 0, given by

r4 =
L3 −

√
L2

3 − 4|1 + 2(p− δ)|
2|1 + 2(p− δ)|

and L3 = 3 + |1 + 2(p− δ)|.
Remark 3.4. By taking p = 1 and q = 0 , Corollary 3.3 yields results of Goyal and Gosami[3].

By taking γ = (p− δ)cos λe−iλ (|λ| < π
2 , δ(0 ≤ δ < p), in Corollary 3.1, we state the following corollary without

proof.

Corollary 3.5. Let the function f ∈ Σp and g(z) ∈ Mp,q
α,β(α, λ) if (J α

β,pf(z))(q) is majorized by (J α
β,pg(z))(q) in

∆∗ then

|(J α
β,pf(z))(q)| ≤ |J α

β,p(g(z))(q)|, |z| ≤ r,

where r = r(T, λ) is given by

r =
T −

√
T 2 − 4|α + β − 1 + 2(p− δ)cosλ e−iλ|(α + β − 1)

2|α + β − 1 + 2(p− δ)cosλ e−iλ|
and

T = (α + β + 1) + |1 + 2(p− δ)cosλe−iλ|.
Concluding Remarks: Further specializing the parameters α, β one can define the various other interesting

subclasses of Σp involving the various integral operators and the corresponding corollaries as mentioned above can
be derived easily.
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