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Abstract 

 

In this paper, making use of some well-known summation formulae and generating relations due to Qureshi, Khan and 

Pathan, an attempt has been made to establish some transformation formulae of ordinary hyper geometric series which 

are seemed to be new and in different form. We have also given some special cases. 
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1. Introduction 

The hypergeometric function and its generalizations, summation theorems and transformation formulae have been 

presented in many textbooks [1], [5], [6], and [11] where references to the extensive literature on the subject may be 

found. Mathematicians working in the area of ordinary and basic hypergeometric series were interested for 

transformation formulae among various generalised hypergeometric functions and they succeeded in their goal. The 

celebrated Bailey [2] transform was extensively used to obtain transformation formulae of ordinary hypergeometric 

series and basic hypergeometric series with help of known summation formulae. The technique provided by Bailey [2] 

and Slater [3], [4] motivated a number of mathematicians namely Andrews [7], [8], Verma and Jain [9], [10], U.B.Singh 

[12], Agarwal [13], S.P. Singh [14], Denis et.al. [16], [17], Srivastav and Rudravarapu [18] and S. Singh [19] and they 

enriched the literature of ordinary and basic hypergeometric series. Motivated by the aforementioned works, making use 

of some well-known summation formulae and generating relations due to Qureshi et.al. [15], an attempt has been made 

to establish some transformation formulae of ordinary hypergeometric series on the same track as many authors 

established numerous transformation formulae of ordinary hypergeometric series and basic hypergeometric series by 

using Bailey transform and certain known summation formulae. Here, we have used generating relations instead of 

Bailey transform to establish transformation formulae of ordinary hypergeometric series which are believed to be new. 

In view of the importance and usefulness of the generating relations, we have extended the idea of generating relations 

for obtaining transformation formulae of ordinary hypergeometric series.The transformation formulae of 

hypergeometric series play a pivotal role in the investigation of various useful properties and can also be used as a new 

platform for further study. 

2. Definitions and notations 

The following notations and definitions shall be used throughout this paper 

For ‘ a ’ real or complex and ‘ n ’ be a positive integer, we define 
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If ‘ a ’ is a negative integer  m  , then 
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a                 if m < n  

Now, we define a generalized hypergeometric function, 
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Where there are always r  of a  parameters and s  of the b parameters. The meaning of ( a ) and (b ) are sequences of 

parameters , , ,..., , , ,...,1 2 3 1 2 3a a a a and b b b br s respectively. 

The series (1) is convergent if  
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iv) r > 1s                               when   0z   

In, 2002, Qureshi et.al. [15] Established two hyper geometric generating relations- 
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Where  An be the bounded sequence of arbitrary complex numbers with any values of numerator and denominator 

parameters and x, y are the variables. 

Further, we shall use following well known summation formulae to derive our main results- 
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(cf Slater [6], App.III .9, p-243)  
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(cf Slater [6], App.III .11, p-244) 
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(cf Slater [6], App.III.13 p-244) 
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Provided that  1 2a b c d e n       

(cf Slater [6], App.III.14, p-244) 
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(cf Slater [6], App.III .25, p-245) 
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(cf Slater [6], App.III .26, p-245) 

, 1 , ; 1
2

3 2

,1 ;
2

a
a n

F
a

a n

 
  

 
  
  

(1 )a n                                                                                                                                   (10) 

(cf Slater [6], (2.3.4.10), p-57) 

Gauss’s theorem, 
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(cf Slater [6], App.III.3, p-243) 

Kummer’s theorem, 
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(cf Slater [6], App.III.5, p-243) 

3. Main results 

Our main results are as under 
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4. Proof 

In this section, we shall derive our main results by taking suitable values of Am , 2d and y in generating relation (2) 

and (3) and appropriate summation formula accordingly. 
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Using (4) in the inner series on left hand side of (20); we get required result (13). 
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Using (5) in the inner series on left hand side of (21); we get required result (14). 
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Using (6) in the inner series on left hand side of (22); we get required result (15). 
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Using (7) in the inner series on left hand side of (23); we get required result (16). 
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Using (8) in the inner series on left hand side of (24); we get required result (17). 

 

Proof of 3.6: 
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Using (9) in the inner series on left hand side of (25); we get required result (18). 
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Using (10) in the inner series on left hand side of (26); we get required result (19). 

5. Special cases 

i) If we take 1x  , in (13), we have 
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Using Gauss theorem (11) in the right hand side of (27), we have 
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Summing  the right hand side of (28) by making use of (8), we have 

 1 1, ;1
2 1 22 2 2

1
1 ;

2 2

a a an a nF
a

a n
n

     
   

    
 

                                                                                                                                    (29) 

iv) Using Kummer’s theorem (12) after putting x=1in (18), we have 
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v) The equation (17) can be rewritten as under: 
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104 Global Journal of Mathematical Analysis 

 

 

 
;

2
1 11 0

;

x
a

F x

 
 

  
 
  

1
2 1

1

a
a

x

   
 

 

Several other special cases could also be deduced. 

6. Conclusion 

In this paper, we obtained some transformation formulae of ordinary hyper geometric functions having different 

arguments i.e. argument of hyper geometric function on left hand side is different from argument on right hand side. 

This is the main beauty of our transformation formulae. Also, we provided some special cases of our main results. A 

number of other interesting and useful results can also be recorded by applying same technique. 
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