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Abstract 

 

In this paper the dynamics of a discrete-time prey-predator system is investigated in the closed first quadrant   
 . The 

existence and stability of fixed points are analyzed algebraically .The conditions of existence for flip bifurcation is 

derived by busing center manifold theorem and bifurcation theory. Numerical simulations not only illustrate our results 

but also exhibit complex dynamical behaviors of the model, such as the periodic-doubling bifurcation in periods 2,4 and 

8 and quasi-periodic orbits and chaotic sets. 
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1. Introduction 

It is well known the Lotka-Voltera prey-predator model is one of the fundamental population models, a predator -prey 

interaction has been described firstly by two pioneers Lotka [18] and Voltera [22] in two independent works. After 

them, more realistic prey-predator model were introduced by Holling suggesting three types of functional responses for 

different species to model the phenomena of predation [9]. Predator-prey models have already received much attention 

from many authors. For example, the stability, and the existence of periodic solutions of the predator prey models are 

studied in [16], [19], [20], [23]. The dynamics of a prey-predator differential equations model is studied by many 

authors see [6], [7], [15]. Another possible way to understand a prey-predator model is by using discrete models. 

Actually these models are more reasonable than the continuous time models when populations have non-overlapping 

generations see [14]. Discrete-time models can give rise to more efficient computational models for numerical 

simulations and it exhibits more plentiful dynamical behaviors than a continuous-time model of the same type. For 

continuous-time predator-pry models, many authors have chosen delay as the bifurcation parameter to discuss the Hopf 

bifurcation in [13, 21]. However, there are few articles discussing the dynamical behaviors of predator-prey models, 

which include bifurcations and chaos phenomena for the discrete-time models. Liu and Xiao [17], Jing and Yang [11], 

He and Lai [8], Hu et al. [10] obtained the flip bifurcation by using the center manifold theorem and bifurcation theory. 

But Agiza et al. [1] and Celik et al. [3] only showed the flip bifurcation and Hopf bifurcation by using numerical 

simulations. A functional response is called of Beddington-DeAngelis type if it takes the form        
  

         
. 

This type of functional response was introduced by Beddington [2] and DeAngelis et al. [4]. The term    measures the 

mutual interference between predators. In this paper we consider the following continuous-time prey-predator model 

with Beddington-DeAngelis type of functional response described by differential equations 
   

  
       

  

 
  

     

         
  

   

  
 

       

         
                                                                                                                                                          (1) 

The model parameters               and   are assuming only positive values. The prey    grows with intrinsic 

growth rate r and carrying capacity K in the absence of predation. The predator    consumes the prey    with functional 
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response Beddington-DeAngelis type. The constant    is conversion rates of prey to predator,   is predator death rate 

for species      by using the following transformation               
  

 
 we get the following system 

  

  
        

  

       
  

  

  
 

   

       
                                                                                                                                                                (2) 

Where         
  

 
   

    

 
  and   

  

 
. Applying the forward Euler scheme to system (2), we obtain the discrete-

time system as follows: 

           
 

       
   

       
  

       
                                                                                                                                                    (3) 

Where d is the step size. The main goal of this paper is to investigate this version as a discrete-time dynamical system in 

the interior of the first quadrant by using bifurcation theory and center manifold theory. The organization of this paper 

is as follows. In the second section we discuss the existence and local stability of fixed points in model (3). In the third 

section study the numerical simulations ,which not only illustrate our results with theoretical analysis but also exhibit 

complex dynamical behaviors such as the cascade periodic-doubling bifurcation inperiods 2,4 and 8 and quasi-periodic 

orbits and chaotic sets .In section four we give the discussion for our work. 

2. The existence and stability of fixed points 

In this section, we consider the discrete-time model (3) in the closed first quadrant   
 on the xy-plane. We first discuss 

the existence of the fixed points for (3), and then study the stability of the fixed point by the eigenvalues for the 

variational matrix of (3) at the fixed point.  

To determine the fixed points of (3) we have to solve the non- linear system given by 

           
 

       
   

       
  

       
                                                                                                                                                    (4) 

By composition of the above algebraic system we obtain the following results: 

 

Lemma 2.1 System (3): 

 

1) Has two fixed points; for all parameter values, 

a)        Is origin? 

b)        Is the axial fixed point. 

2) Has the interior fixed point     
      where 

   
          

  
 And   

 

      
       

Now we study the stability of these fixed points. Note that the local stability of the fixed point      is determined by 

the modules of eigenvalues ofthe characteristic equation at the fixed point. 

The Jacobian matrix of (3) evaluated at the point       is given by 

        
      

      
   

Where 

            
  

                 
 

       
     

    
         

             

    
         

          
   

       
     

            
  

         
      

And the characteristic equation of the Jacobian matrix        can be writtenas 

                   (5) 

Where 

                  

                    . 

In order to discuss the stability of the fixed points of (3), we also need the following Lemma. 

 

Lemma 2.2 Let            . Suppose that             are two roots of       . Then: 

1)        and        if and only if         and    ; 

2)        and        (or        and        ) if and only if        ; 



Global Journal of Mathematical Analysis 107 

 

 

 

 

3)        and        if and only if         and    ; 

4)         and        if and only if         and      ; 

5) If    and    are complex and         and        if and only if          and    . 

Let    and   be two roots of (5). We recall some definitions of topological types for a fixed point     . 

 

Definition 2.3: A fixed point      is called a sink if       and       ,      is called a source if        

and       ,       is called a saddleif        and        (or        and        ), and       is called a 

Non-hyperbolic if either        or      . 

 

Proposition 2.4: The fixed point   is a source if   
 

 
,   is a saddle if    

 

 
, and    is a non-hyperbolic if   

 

 
. 

At the fixed point   the roots of equation (5) are       with    and       , so   is not one with model 

and the second eigenvalue      when   
 

 
. This periodic doubling bifurcation may occur where parameters vary in 

the neighborhood  
 

 
. 

The next proposition shows the local dynamics of fixed point   from Lemma (2.2). 

 

Proposition 2.5: There are at least four different topological types of   for all permissible values of parameters 

1)   is a sink if 
 

   
  and           

      

        
 ; 

2)   is a source if 
 

   
   and        

 

   
               

      

        
  ; 

3)   is a saddle if        
 

   
   and   

      

        
             

      

        
 ; 

4)   isnon-hyperbolic if either     or
 

   
  or   

      

        
; 

From the above proposition we obtain, for a fixed point    if               

Where 

                     
 

   
   

      

        
                 

then one of the eigen values of       is -1 and the other      
 

   
    isneither 1 nor -1.Therefore, there may be 

flip bifurcation of a fixed point   , if d varies in the small neighbourhood of d = 2 and              . 

 

Proposition 2.6: Let     
     be the positive fixed point of (3). Then 

1)    Is a sink if one of the following conditions holds? 

a)      And     
      

  ; 

b)      And     
  

  ; 

2) 2.    Is a source if one of the following conditions holds? 

a)      And   
      

  ; 

b)      And   
  

  ; 

3) 3.    Is a saddle if one of the following conditions holds? 

a)      And     
      

  ; 

b)      And   
      

    ; 

4) 4.    is non hyperbolic if one of the following conditions holds 

a)      And   
      

  ; 

b)      And   
  

  ; 

Where 

             
  

 
          

            
 

 
        

          . 

From Lemma (2.2), we can see that one of the eigen values of    is -1 and the other is neither 1 nor -1if the term (4a) in 

proposition (2.6) holds. Therefore there may be flip bifurcation of    if d varies in the small neighborhood of  
  or   

  

where 
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Also when the term (4b) in proposition (2.6) holds, we can obtain that the eigenvalues of    are pair of conjugate 

complex numbers with              and hence the conditions in term (4b) of proposition (2.6) can be written as 

                 
  

                      

If the parameter d varies in the small neighborhood of   , then the Hopf bifurcation will appear. 

3. Numerical simulations 

In this section, we give the bifurcation diagrams, phase portraits of model (3) to confirm the above theoretical analysis 

and show the dynamical behaviors by using numerical simulations. The bifurcation parameters are considered in the 

following three cases: 

Case 1: Choosing a = 0.3, b = 0.5, c = 0.1, and e = 0.2, initial value                 and           . We see that 

model (3) has a fixed point         and           . Figure1 show the correctness of proposition (2.5). From Figure 

1 we see that the fixed point         is stable for d< 2, and loses its stability when d = 2. Further, when d > 2there is 

the period- doubling bifurcation. Moreover a chaotic set is emerged with increasing of d. 

 

 
Fig. 1: The Flip Bifurcation of X (N) With A=0.3, B=0.5, C=0.1, And E=0.2,           And Initial                 . 

 

Case 2: Choosing a = 1.3, b = 3, c = 2, and e = 0.4, initial value                  and             and we only 

vary parameter d to see the variation of dynamics behaviors about model (3), on the basis of proposition (2.6), we know 

that the system has only one positive fixed point. After calculation for the positive fixed point of map (3), the flip 

bifurcation emerges from the fixed point ( 5/6, 25/36 ) at d = 2.6855 and (a, b, c, d, e) = (1.3, 3, 2, 2.6855, 0.4)    
 . It 

shows the correctness of proposition (2.6). From Figure 2 we see that the fixed point is stable for d< 2.6855, and loses 

its stability when d = 2.6855. We also observe that there is a cascade of period-doubling bifurcation.  

 

 
Fig. 2: The Bifurcation Diagram of Model (3) In The (D, X)-Plane For A = 1.3, B=3, C=2, And E = 0.4,           And Initial         
         . 

 

Case 3: Choosing a=1, b = 0.5, c = 4, and e = 9/10, initial value                   and          according 

proposition (2.6), we know that the system has only one positive fixed point. After calculation of the positive fixed 

point of the system, the flip bifurcation emerges from the fixed point (9/20, 11/10) at d =1.598 and             
                     . It shows the correctness of proposition (2.6).  
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Fig. 3: The Bifurcation Diagram of the System with          And                  . 

 

 
Fig. 4: Local Amplification Corresponding to Fig.4 

 

From Figure 3 we observe that the fixed point (9/20, 11/10) is stable for d<1.598, that it loses its stability when d=1.598 

and that an invariant circle appears when the parameter d exceeds 1.598. Figure 4 is local amplification or    
          . 

4. Conclusions 

In this paper we conclude that the discrete-time prey-predator model (3) has complex dynamics and we show that the 

unique positive fixed point of model (3) can undergo flip bifurcation and Hopf bifurcation. Moreover system (3) 

displays much interesting dynamical behaviors, including cascade of periodic-doubling, quasi-periodic orbits and the 

chaotic sets. These results reveal far richer dynamics of the discrete model compared to the continuous model. 
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