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Abstract

In this paper, we establish a new Alzer type inequality related to binomial function by using Sitnik methods.

Keywords: binomial function; Alzer type inequality; monotonicity

]

1. Introduction

The difference Jn(x) = ex−
n
∑

k=0

xk

k! for real x and positive integers n have been studied by many mathematicians. In 1943, P. K. Menon[8]

proved the intriguing inequality

Jn−1(x)Jn+1(x)>
1
2
(Jn(x))2, (1)

which is valid for all positive integers n and for all x > 0.
Later, H. Alzer[1] established the sharpened inequality

Jn−1(x) · Jn+1(x)>
n+1
n+2

(Jn(x))2, (2)

for all n ∈ N and x > 0, and with the best possible constant n+1
n+2 .

In 2015, L. Yin and W. -Y. Cui[13] showed a generalization of Alzer inequality related to exponential function, and generalized it for the
remainder of Maclaurin series.
Recently, S. M. Sitnik formulated some conjectures on monotonicity of ratios for exponential series remainders. They are equivalent to
conjectures on monotonicity of a ratio of Kummer hypergeometric function , see [9] and [10]. Afterwards, K. Mehrez and S. M. Sitnik
proved their conjectures in [7].
Actually, the Turán type inequalities have a more extensive literature and recently the results have been applied in problems arising from many
fields such as information theory, economic theory and biophysics.For more about this subject the readers refer to [2, 3, 4, 5, 8, 6, 9, 11, 12]
and the references therein.
In this paper,we consider the following binomial function

In(x) =
1

p
√

1+ xp
−

n

∑
k=0

(−1)k p(p+1) · · · (p+ k−1)xkp

k!

=
∞

∑
k=n+1

(−1)k p(p+1) · · · (p+ k−1)xkp

k!
.

where
1

p
√

1+ xp
= 1− pxp +

p(p+1)
2!

x2p

+ · · ·+(−1)n p(p+1) · · · (p+n−1)
n!

xnp + · · ·.
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The main purpose of this note is to find the greatest value Cn,k, such that

In−k(x)In+k(x)>Cn,p,k(In(x))2 (3)

is valid for every positive x and n,k ∈ N.
We established the sharpened inequality

In−1(z)In+1(z)
I2
n (z)

>
(p+n+1)(n+1)
(p+n)(n+2)

, (4)

and

In−k(z)In+k(z)
I2
n (z)

>
(p+n+1) · · · (p+n+ k)(n− k+2) · · · (n+1)
(p+n− k+1) · · · (p+n)(n+2) · · · (n+ k+1)

. (5)

2. lemmas

Lemma 1 ([7]). Let {an} and {bn},(n = 0,1,2, · · ·) be real numbers such that bn > 0 and { an
bn
}n≥0 is increasing(decreasing), then

{ a0+a1+···+an
b0+b1+···+bn

} is increasing(decreasing).

Lemma 2 ([7]). Let {an} and {bn},(n = 0,1,2, · · ·) be real numbers and let the power series A(x) =
∞

∑
n=0

anxn and B(x) =
∞

∑
n=0

bnxn be

convergent if |x|< r. If bn > 0,(n = 0,1,2, · · ·) and the sequence { an
bn
}n≥0 is (strictly)increasing(decreasing), then the function A(x)

B(x) is also
(strictly) increasing(decreasing) on [0,r).

3. main results

Theorem 1. For every n,k ∈ N,p≥ 2, and 0 < z < 1. The function

E(n, p,k,z) =
In−k(z)In+k(z)

I2
n (z)

(6)

is strictly increasing on (0,∞). As a result, we have the following Turán type inequalities

In−k(z)In+k(z)
I2
n (z)

>
(p+n+1) · · · (p+n+ k)(n− k+2) · · · (n+1)
(p+n− k+1) · · · (p+n)(n+2) · · · (n+ k+1)

(7)

where the constant (p+n+1)···(p+n+k)(n−k+2)···(n+1)
(p+n−k+1)···(p+n)(n+2)···(n+k+1) is best possible.

Proof. simple computation yields

E(n, p,k,z) =
In−k(z)In+k(z)

I2
n (z)

=

∞

∑
m=0

m
∑

j=0

(p(p+1)···(p+n−k+ j))(p···(p+n+k+m− j))
(n−k+1+ j)!(n+k+1+m− j)! (−1)2n+2+mz(2n+2+m)p

∞

∑
m=0

m
∑

j=0

(p···(p+n+ j))(p(p+1)···(p+n+m− j))
(n+1+ j)!(n+1+m− j)! (−1)2n+2+mz(2n+2+m)p

Define sequences {An,p,k, j},{Bn,p,k, j} and {Cn,p,k, j} by

An,p,k, j =
(p · · · (p+n− k+ j))(p · · · (p+n+ k+m− j))

(n− k+1+ j)!(n+ k+1+m− j)!
(−1)2n+2+m,

Bn,p,k, j =
(p · · · (p+n+ j))(p · · · (p+n+m− j))

(n+1+ j)!(n+1+m− j)!
(−1)2n+2+m,

and

Cn,p,k, j =
An,p,k, j

Bn,p,k, j

=

(p(p+1)···(p+n−k+ j))(p(p+1)···(p+n+k+m− j))
(n−k+1+ j)!(n+k+1+m− j)! (−1)2n+2+m

(p(p+1)···(p+n+ j))(p(p+1)···(p+n+m− j))
(n+1+ j)!(n+1+m− j)! (−1)2n+2+m

=
(p(p+1) · · · (p+n− k+ j))
(p(p+1) · · · (p+n+ j))

(p(p+1) · · · (p+n+ k+m− j))(n+1+ j)!(n+1+m− j)!
(p(p+1) · · · (p+n+m− j))(n− k+1+ j)!(n+ k+1+m− j)!

.

=
(n+ j+1− k+1) · · · (n+ j+1)

(n+1+m− j+1) · · · (n+1+m− j+ k)
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(p+n+m− j+1) · · · (p+n+m− j+ k)
(p+n+ j− k+1) · · · (p+n+ j)

.

Further computation results in
Cn,p,k, j+1

Cn,p,k, j
=

(p+n+m− j)(p+n+ j− k+1)
(p+n+ j+1)(p+n+m− j+ k)

· (n+2+ j)(n+m− j+ k+1)
(n+ j− k+2)(n+m− j+1)

.

=
((n+m− j)2 +(p+ k+1)(n+m− j)+ p(k+1))
((n+m− j)2 +(p+ k+1)(n+m− j)+ p+ k)

· ((n+ j)2 +(p− k+3)(n+ j)+2(p− k+1))
((n+ j)2 +(p− k+3)(n+ j)+(p+1)(2− k))

. (8)

When p≥ 2, then p(k+1)> p+k,and 2(p−k+1)− (p+1)(2−k) = (p−2)k≥ 0, so we have Cn,p,k, j+1
Cn,p,k, j

> 1.This implies that the sequence
Cn,p,k, j is strictly increasing to j. By using Lemma 2.1 and Lemma 2.2, we easily obtain the function E(n, p,k,z) is strictly increasing on
(0,∞).
Finally, from limit identity

lim
z→0+

In−k(z)In+k(z)
I2
n (z)

=
(p+n+1) · · · (p+n+ k)(n− k+2) · · · (n+1)
(p+n− k+1) · · · (p+n)(n+2) · · · (n+ k+1)

, (9)

we complete the proof.

In particular, taking k = 1 in the Theorem 3.1, we easily obtain the following Corollary 3.1.

Corollary 1. For every n ∈ N, p≥ 2,and 0 < z < 1. The function

E(n, p,z) =
In−1(z)In+1(z)

I2
n (z)

(10)

is strictly increasing on (0,∞). As a result, we have the following Turán type inequalities

In−1(z)In+1(z)
I2
n (z)

>
(p+n+1)(n+1)
(p+n)(n+2)

(11)

where the constant (p+n+1)(n+1)
(p+n)(n+2) is best possible.
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