On paranorm BV_σ I-convergent sequence spaces defined by an Orlicz function

Vakeel A. Khan*1, Ayhan Esi2, Mohd Shafiq1

1Department of Mathematics Aligarh Muslim University, Aligarh-202002 (INDIA)
2Adiyaman University Science and Art Faculty Department of Mathematics 02040, Adiyaman, Turkey
*Corresponding author E-mail: vakhanmaths@gmail.com

Abstract

In this article we introduce and study $\sigma_{BV}(M, p)$, $\alpha_{BV}(M, p)$ and $\infty_{BV}(M, p)$ sequence spaces where $p = (p_k)$ is the sequence of strictly positive real numbers with the help of BV_σ space [see [23]] and an Orlicz function M. We study some topological and algebraic properties and decomposition theorem. Further we prove some inclusion relations related to these new spaces.

Keywords: Bounded variation, Invariant mean, σ-Bounded variation, Ideal, Filter, Orlicz function, I-convergence, I-null, Solid space, Sequence algebra, paranorm.

1. Introduction

Let \mathbb{N}, \mathbb{R} and \mathbb{C} be the sets of all natural, real and complex numbers respectively.

We denote

$$\omega = \{x = (x_k): x_k \in \mathbb{R} \text{ or } \mathbb{C}\}$$

the space of all real or complex sequences.

Let ℓ_∞, c and c_0 denote the Banach spaces of bounded, convergent and null sequences respectively with norm

$$\|x\| = \sup_k |x_k|$$

Let v denote the space of sequences of bounded variation. That is,

$$v = \left\{x = (x_k): \sum_{k=0}^{\infty} |x_k - x_{k-1}| < \infty = 0 \right\} \quad (1.1)$$

v is a Banach Space normed by

$$\|x\| = \sum_{k=0}^{\infty} |x_k - x_{k-1}| \quad (see [23])$$

Let σ be a mapping of the set of the positive integers into itself having no finite orbits. A continuous linear functional ϕ on ℓ_∞ is said to be an invariant mean or σ-mean if and only if

(i) $\phi(x) \geq 0$ where the sequence $x = (x_k)$ has $x_k \geq 0$ for all k.

(ii) $\phi(e) = 1$ where $e = \{1, 1, 1, \ldots\}$,
(iii) $\phi(x_{\sigma(n)}) = \phi(x)$ for all $x \in \ell_\infty$

If $x = (x_k)$, write $Tx = (Tx_k) = (x_{\sigma(k)})$. It can be shown that

$$V_\sigma = \left\{x = (x_k) : \lim_{m \to \infty} t_{m,k}(x) = L \text{ uniformly in } k, L = \sigma - \lim x \right\} \quad (1.2)$$

where $m \geq 0, k > 0$.

$$t_{m,k}(x) = \frac{x_k + x_{\sigma(k)} + \cdots + x_{\sigma^m(k)}}{m+1} \quad \text{and} \quad t_{-1,k} = 0 \quad (1.3)$$

where $\sigma_m(k)$ denote the m-th iterate of $\sigma(k)$ at k. In case σ is the translation mapping, that is, $\sigma(k) = k+1$, σ-mean is called a Banach limit (see, [2]) and V_σ, the set of bounded sequences of all whose invariant means are equal, is the set of almost convergent sequences. The special case of (1.2) in which $\sigma(n) = n+1$ was given by Lorentz [19, Theorem 1], and that the general result can be proved in a similar way. It is familiar that a Banach limit extends the limit functional on c (see, [19]) in the sense that

$$\phi(x) = \lim x, \text{ for all } x \in c \quad (1.4),$$

Remark 1.1. In view of above discussion we have $c \subset V_\sigma$.

Theorem 1.2. [23, Theorem 1.1] A σ-mean extends the limit functional on c in the sense that $\phi(x) = \lim x$ for all $x \in c$ if and only if σ has no finite orbits. That is, if and only if for all $k \geq 0, j \geq 1, \sigma^j(k) \neq k$

Put

$$\phi_{m,k}(x) = t_{m,k}(x) - t_{m-1,k}(x) \quad (1.5)$$

assuming that $t_{-1,k} = 0$

A straightforward forward calculation shows that (see [22])

$$\phi_{m,k}(x) = \begin{cases} \frac{1}{m(m+1)} \sum_{j=1}^m j(x_{\sigma}(k) - x_{\sigma}^{-1}(k)), & \text{if } (m \geq 1), \\ x_k, & \text{if } (m = 0) \end{cases} \quad (1.6)$$

For any sequence x, y and scalar λ, we have

$$\phi_{m,k}(x + y) = \phi_{m,k}(x) + \phi_{m,k}(y)$$

and

$$\phi_{m,k}(\lambda x) = \lambda \phi_{m,k}(x).$$

Definition 1.3. A sequence $x \in \ell_\infty$ is of σ-bounded variation if and only if

(i) $\sum_{m=0}^{\infty} |\phi_{m,k}(x)|$ converges uniformly in k.

(ii) $\lim_{m \to \infty} t_{m,k}(x)$, which must exist, should take the same value for all k.

Subsequently invariant means have been studied by Ahmad and Mursaleen [23,1,22], J.P. King [14], Raimi [26], Khan and Ebadullah [12,13] and many others. Mursaleen [23] defined the sequence space BV_σ, the space of all sequence of σ-bounded variation as

$$BV_\sigma = \{x \in \ell_\infty : \sum_{m} |\phi_{m,k}(x)| < \infty, \text{uniformly in } k\}$$
Theorem 1.4. BV_σ is a Banach space normed by
\[
\|x\| = \sup_k \sum |\phi_{m,k}(x)| \quad (c.f.[23],[26],[29],[22])
\]

Definition 1.5. A function $M : [0,\infty) \to [0,\infty)$ is said to be an Orlicz function if it satisfies the following conditions

(i) M is continuous, convex and non-decreasing

(ii) $M(0) = 0$, $M(x) > 0$ and $M(x) \to \infty$ as $x \to \infty$

Remark 1.6. If the convexity of an Orlicz function is replaced by $M(x+y) \leq M(x) + M(y)$, then this function is called modulus function.

Remark 1.7. If M is an Orlicz function, then $M(\lambda x) \leq \lambda M(x)$ for all λ with $0 < \lambda < 1$.

An Orlicz function M is said to satisfy Δ_2–Condition for all values of u if there exists a constant $K > 0$ such that $M(Lu) \leq KL M(u)$ for all values of $L > 1$.

Lindenstrauss and Tzafriri[18] used the idea of an Orlicz function to construct the sequence space
\[
\ell_M = \{x \in \omega : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{for some } \rho > 0\}.
\] (1.7)

The space ℓ_M becomes a Banach space with the norm
\[
\|x\| = \inf\left\{\rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \leq 1\right\}
\] (1.8)
which is called an Orlicz sequence space. The space ℓ_M is closely related to the space ℓ_p which is an Orlicz sequence space with $M(t) = t^p$ for $1 < p < \infty$.

Later on some Orlicz sequence spaces were investigated by Parashar and Choudhury [25], Maddox [20], Khan [10], Kamthan and Gupta [9], Bhardwaj and Singh [3], and many others.

Definition 1.8. Let X be a linear space. A function $g : X \to \mathbb{R}$ is called paranorm, if for all $x, y \in X$,

(P1) $g(x) = 0$ if $x = \theta$,

(P2) $g(-x) = g(x)$,

(P3) $g(x+y) \leq g(x) + g(y)$,

(P4) If (λ_n) is a sequence of scalars with $\lambda_n \to \lambda$ ($n \to \infty$) and $x_n, a \in X$ with $x_n \to a$ ($n \to \infty$) in the sense that $g(x_n - a) \to 0$ ($n \to \infty$), then $g(\lambda_n x_n - \lambda a) \to 0$ ($n \to \infty$).

The concept of paranorm is closely related to linear metric spaces. It is a generalization of that of absolute value (see,[21]). The notion of paranormed sequence space was studied at the initial stage by Nakano[24]. Later on, it was further investigated by Maddox[20,21], Lascarides[17], Tripathy[30] and many others. A paranorm g for which $g(x) = 0$ implies $x = \theta$ is called a totally paranorm on X, and the pair (X, g) is called a totally paranormed space.

Initially, as a generalization of statistical convergence[6,7], the notation of ideal convergence (I-convergence) was introduced and studied by Kostyrko, Mačaj, Salát and Wilczyński ([15,16]). Later on, it was studied by Šalát and Tripathy [30], Hazarika [8,32], Khan and Ebadullah [11,12,13], Demirci [4] and many others.

Here we give some important definitions.

Definition 1.9. A sequence $x=(x_k) \in \omega$ is said to be statistically convergent to a limit $L \in \mathbb{C}$ if for every $\epsilon > 0$, we have
\[
\lim_{k} \frac{1}{k} \left|\{n \in \mathbb{N} : |x_k - L| \geq \epsilon, n \leq k\}\right| = 0
\]
where vertical lines denote the cardinality of the enclosed set.

Definition 1.10. Let N be a non-empty set. Then a family of sets $I \subseteq 2^N$ (power set of N) is said to be an ideal if
1) I is additive i.e. $\forall A, B \in I \Rightarrow A \cup B \in I$
2) I is hereditary i.e. $\forall A \in I$ and $B \subseteq A \Rightarrow B \in I$.

Definition 1.11. A non-empty family of sets $\mathcal{L}(I) \subseteq 2^N$ is said to be filter on N if and only if
1) $\Phi \notin \mathcal{L}(I)$,
2) $\forall A, B \in \mathcal{L}(I)$ we have $A \cap B \in \mathcal{L}(I)$,
3) $\forall A \in \mathcal{L}(I)$ and $A \subseteq B \Rightarrow B \in \mathcal{L}(I)$.

Definition 1.12. An Ideal $I \subseteq 2^N$ is called non-trivial if $I \neq 2^N$.

Definition 1.13. A non-trivial ideal $I \subseteq 2^N$ is called admissible if $\{\{x\} : x \in N\} \subseteq I$.

Definition 1.14. A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal $J \neq I$ containing I as a subset.

Remark 1.15. For each ideal I, there is a filter $\mathcal{L}(I)$ corresponding to I, i.e. $\mathcal{L}(I) = \{K \subseteq N : K^c \in I\}$, where $K^c = N \setminus K$.

Definition 1.16. A sequence $x = (x_k) \in \omega$ is said to be I-convergent to a number L if for every $\epsilon > 0$, the set $\{k \in N : |x_k - L| \geq \epsilon\} \in I$.
In this case, we write $I - \lim x_k = L$.

Definition 1.17. A sequence $x = (x_k) \in \omega$ is said to be I-null if $L = 0$. In this case, we write $I - \lim x_k = 0$.

Definition 1.18. A sequence $x = (x_k) \in \omega$ is said to be I-cauchy if for every $\epsilon > 0$ there exists a number $m = m(\epsilon)$ such that $\{k \in N : |x_k - x_m| \geq \epsilon\} \in I$.

Definition 1.19. A sequence $x = (x_k) \in \omega$ is said to be I-bounded if there exists some $M > 0$ such that $\{k \in N : |x_k| \geq M\} \in I$.

Definition 1.20. A sequence space E said to be solid(normal) if $(\alpha_k x_k) \in E$ whenever $(x_k) \in E$ and for any sequence (α_k) of scalars with $|\alpha_k| \leq 1$, for all $k \in \mathbb{N}$.

Definition 1.21. A sequence space E said to be symmetric if $(x_{\pi(k)}) \in E$ whenever $x_k \in E$, where π is a permutation on \mathbb{N}

Definition 1.22. A sequence space E said to be sequence algebra if $(x_k) * (y_k) = (x_k y_k) \in E$ whenever $(x_k), (y_k) \in E$.

Definition 1.23. A sequence space E said to be convergence free if $(y_k) \in E$ whenever $(x_k) \in E$ and $x_k = 0$ implies $y_k = 0$, for all k.

Definition 1.24. Let $K = \{k_1 < k_2 < k_3 < k_4 < k_5 \ldots\} \subseteq \mathbb{N}$ and E be a Sequence space. A K-step space of E is a sequence space $\lambda^K_E = \{(x_{k_n}) \in \omega : (x_k) \in E\}$.

Definition 1.25. A canonical pre-image of a sequence $(x_{k_n}) \in \lambda^K_E$ is a sequence $(y_k) \in \omega$ defined by

$$y_k = \begin{cases} x_k, & \text{if } k \in K, \\ 0, & \text{otherwise.} \end{cases}$$

A canonical preimage of a step space λ^K_E is a set of preimages all elements in λ^K_E i.e. y is in the canonical preimage of λ^K_E iff y is the canonical preimage of some $x \in \lambda^K_E$.

Definition 1.26. A sequence space \(E \) is said to be monotone if it contains the canonical preimages of its step space.

Definition 1.27. If \(I = I_f \), the class of all finite subsets of \(N \). Then, \(I \) is an admissible ideal in \(N \) and \(I_f \) convergence coincides with the usual convergence.

Definition 1.28. If \(I = I_\delta = \{ A \subseteq N : \delta(A) = 0 \} \). Then, \(I \) is an admissible ideal in \(N \) and we call the \(I_\delta \)-convergence as the logarithmic statistical convergence.

Definition 1.29. If \(I = I_d = \{ A \subseteq N : d(A) = 0 \} \). Then, \(I \) is an admissible ideal in \(N \) and we call the \(I_d \)-convergence as the asymptotic statistical convergence.

Remark 1.30. If \(I_\delta \lim x_n = l \), then \(I_d \lim x_n = l \)

The following lemmas remained an important tool for the establishment of some results of this article.

Lemma(I). Every solid space is monotone

Lemma(II). Let \(K \in \mathcal{L}(I) \) and \(M \subseteq N \). If \(M \notin I \), then \(M \cap K \notin I \).

Lemma(III). If \(I \subseteq 2^N \) and \(M \subseteq N \). If \(M \notin I \), then \(M \cap N \notin I \).

Khan and K.Ebadullah[18] introduced and studied the following sequence space.

For \(m \geq 0 \)

\[BV_\sigma^I = \left\{ x = (x_k) \in \omega : \{ k \in N : |\phi_{m,k}(x) - L| \geq \epsilon \} \in I, \text{ for some } L \in \mathbb{C} \right\}. \] (2.1)

2. Main results

In this article we introduce the following classes of sequence spaces:

For \(m \geq 0 \)

\[BV_\sigma^I(M,p) = \left\{ x = (x_k) \in \omega : \left\{ k \in N : M \left(\frac{\left| \phi_{m,k}(x) - L \right|}{\rho} \right)^p \geq \epsilon \right\} \in I, \text{ for some } L \in \mathbb{C}, \rho > 0 \right\}; \] (2.2)

\[\omega BV_\sigma^I(M,p) = \left\{ x = (x_k) \in \omega : \left\{ k \in N : M \left(\frac{\left| \phi_{m,k}(x) \right|}{\rho} \right)^p \geq \epsilon \right\} \in I, \text{ for some } \rho > 0 \right\}; \] (2.3)

\[\ell_\infty(M,p) = \left\{ x = (x_k) \in \omega : \sup_k M \left(\frac{\left| \phi_{m,k}(x) \right|}{\rho} \right)^p < \infty, \text{ for some } \rho > 0 \right\}; \] (2.4)

\[\omega BV_\sigma^I(M,p) = \left\{ x = (x_k) \in \omega : \left\{ k \in N : \exists K > 0, M \left(\frac{\left| \phi_{m,k}(x) \right|}{\rho} \right)^p \geq K \right\} \in I, \text{ for some } \rho > 0 \right\}. \] (2.5)

We also denote

\[\mathcal{M}^I_{BV_\sigma}(M,p) = BV_\sigma^I(M,p) \cap \ell_\infty(M,p) \]

and

\[0\mathcal{M}^I_{BV_\sigma}(M,p) = 0BV_\sigma^I(M,p) \cap \ell_\infty(M,p). \]
Throughout the article, if required, we denote
\(\phi_{m,k}(x) = x^k \), \(\phi_{m,k}(y) = y^k \) and \(\phi_{m,k}(z) = z^k \) where \(x, y, z \) are \((x_k), (y_k) \) and \((z_k) \) respectively.

Theorem 2.1. Let \(p = (p_k) \in l_\infty \). For an Orlicz function \(M \), the classes of sequence \(0BV_\sigma^I(M, p), BV_\sigma^I(M, p), \)
\(0M_{BV_\sigma}^I(M, p) \) and \(M_{BV_\sigma}^I(M, p) \) are the linear spaces.

Proof. We shall prove the result for the space \(BV_\sigma^I(M, p) \). Rests will follow similarly.

For, let \(x = (x_k), y = (y_k) \in BV_\sigma^I(M, p) \) be any two arbitrary elements and let \(\alpha, \beta \) are scalars. Now, since \(x = (x_k), y = (y_k) \in BV_\sigma^I(M, p) \). \(\Rightarrow \) For \(\epsilon > 0, \exists \) some +ve numbers \(\rho_1 \) and \(\rho_2 \) such that the sets

\[
A_1 = \left\{ k \in \mathbb{N} : M\left(\frac{|x_k - L_1|}{\rho_1} \right)^{p_k} \geq \frac{\epsilon}{2} \right\} \in I, \text{ for some } L_1 \in \mathbb{C} \tag{2.6}
\]

and

\[
A_2 = \left\{ k \in \mathbb{N} : M\left(\frac{|y_k - L_2|}{\rho_1} \right)^{p_k} \geq \frac{\epsilon}{2} \right\} \in I, \text{ for some } L_2 \in \mathbb{C} \tag{2.7}
\]

Let

\[
\rho_3 = \max\{2 | \alpha | \rho_1, 2 | \beta | \rho_2\} \tag{2.8}
\]

Since, \(M \) is non-decreasing and convex, we have,

\[
M\left(\frac{|(\alpha x_k' + \beta y_k') - (\alpha L_1 + \beta L_2)|}{\rho_3} \right)^{p_k} \leq M\left(\frac{|\alpha| |x_k' - L_1|}{\rho_3} \right)^{p_k} + M\left(\frac{|\beta| |y_k' - L_2|}{\rho_3} \right)^{p_k} \leq M\left(\frac{|x_k' - L_1|}{\rho_1} \right)^{p_k} + M\left(\frac{|y_k' - L_2|}{\rho_2} \right)^{p_k} \tag{2.9}
\]

Therefore, from (2.6), (2.7) and (2.9), we have

\[
\left\{ k \in \mathbb{N} : M\left(\frac{|(\alpha x_k' + \beta y_k') - (\alpha L_1 + \beta L_2)|}{\rho_3} \right)^{p_k} \geq \epsilon \right\} \subseteq A_1 \cup A_2 \in I.
\]

implies that

\[
\left\{ k \in \mathbb{N} : M\left(\frac{|(\alpha x_k' + \beta y_k') - (\alpha L_1 + \beta L_2)|}{\rho_3} \right)^{p_k} \geq \epsilon \right\} \subseteq I
\]

Therefore, \(\alpha(x_k) + \beta(y_k) \in BV_\sigma^I(M, p) \)

But \(x = (x_k), y = (y_k) \in BV_\sigma^I(M, p) \) are the arbitrary elements

Therefore, \(\alpha x_k + \beta y_k \in BV_\sigma^I(M) \), for all \(x = (x_k), y = (y_k) \in BV_\sigma^I(M, p) \) and for all scalars \(\alpha, \beta \)

Hence, \(BV_\sigma^I(M, p) \) is linear

Theorem 2.2. Let \(p = (p_k) \in l_\infty \). For an Orlicz function \(M \), the spaces \(M_{BV_\sigma}^I(M, p) \) and \(M_{BV_\sigma}^I(M, p) \) are paranormed spaces, paranormed by

\[
g(x) = \inf_{k \geq 1} \left\{ p_k : \sup_k M\left(\frac{\phi_{m,k}(x)}{\rho} \right)^{p_k} \leq 1, \text{ for some } \rho > 0 \right\}
\]

where \(H = \max\{1, \sup_k p_k\} \).

Proof. (P1) Clearly \(g(x) = 0 \) if \(x = \theta \).

(P2) It is obvious that \(g(-x) = g(x) \),
(P3) Let \(x = (x_k) \) and \(y = (y_k) \) be two elements in \(\mathcal{M}^r_{BV} (M, p) \). Now for \(\rho_1, \rho_2 > 0 \), we denote
\[
A_1 = \left\{ \rho_1 : \sup_k M \left(\frac{\varphi_{m,k}(x)}{\rho_1} \right)^{p_k} \leq 1 \right\}
\]
and
\[
A_2 = \left\{ \rho_2 : \sup_k M \left(\frac{\varphi_{m,k}(x)}{\rho_2} \right)^{p_k} \leq 1 \right\}
\]
Let us take \(\rho = \rho_1 + \rho_2 \). Then by using the convexity of \(M \), we have
\[
M \left(\frac{\varphi_{m,k}(x+y)}{\rho} \right) \leq \frac{\rho_1}{\rho_1 + \rho_2} M \left(\frac{\varphi_{m,k}(x)}{\rho_1} \right) + \frac{\rho_2}{\rho_1 + \rho_2} M \left(\frac{\varphi_{m,k}(y)}{\rho_2} \right)
\]
which in terms give us
\[
\sup_k M \left(\frac{\varphi_{m,k}(x+y)}{\rho} \right)^{p_k} \leq 1
\]
and
\[
g(x + y) = \inf \left\{ (\rho_1 + \rho_2)^{\frac{p_k}{k}} : \rho_1 \in A_1, \rho_2 \in A_2 \right\}
\]
\[
\leq \inf \left\{ (\rho_1)^{\frac{p_k}{k}} : \rho_1 \in A_1 \right\} + \inf \left\{ (\rho_2)^{\frac{p_k}{k}} : \rho_2 \in A_1 \right\}
\]
\[
= g(x) + g(y).
\]
(P4) Let \((\lambda_k) \) be a sequence of scalars with \(\lambda_k \to L \) where \(\lambda_k, L \in \mathbb{C} \) and let \((x_k), x \in \mathcal{M}^r_{BV} (M, p) \) be such that \(g(x_k - x) \to 0 \) as \(k \to \infty \). To prove that \(g(\lambda_k x_k - L x) \to 0 \) as \(k \to \infty \).
We put
\[
A_3 = \left\{ \rho_r > 0 : \sup_k M \left(\frac{\varphi_{m,k}(x_k)}{\rho_r} \right)^{p_k} \leq 1 \right\}
\]
and
\[
A_4 = \left\{ \rho_s > 0 : \sup_k M \left(\frac{\varphi_{m,k}(x_k - x)}{\rho_s} \right)^{p_k} \leq 1 \right\}
\]
By convexity and continuity of \(M \), we observe that
\[
M \left(\frac{\varphi_{m,k}(\lambda_k x_k - L x)}{|\lambda_k - L|_{\rho_r} + |L|_{\rho_s}} \right) \leq M \left(\frac{\varphi_{m,k}(\lambda_k x_k - L x)}{|\lambda_k - L|_{\rho_r} + |L|_{\rho_s}} \right) + M \left(\frac{|\lambda_k - L|_{\rho_r} + |L|_{\rho_s}}{\rho_r} \right) M \left(\frac{\varphi_{m,k}(x_k - x)}{\rho_s} \right)
\]
From the above inequality, it follows that
\[
\sup_k M \left(\frac{\varphi_{m,k}(\lambda_k x_k - L x)}{|\lambda_k - L|_{\rho_r} + |L|_{\rho_s}} \right)^{p_k} \leq 1
\]
and consequently, we have
\[
g(\lambda_k x_k - L x) = \inf \left\{ \left(|\lambda_k - L|_{\rho_r} + |L|_{\rho_s} \right)^{\frac{p_k}{k}} : \rho_r \in A_3, \rho_s \in A_4 \right\}
\]
\[
\leq |\lambda_k - L|^{\frac{p_k}{k}} \inf \left\{ (\rho_r)^{\frac{p_k}{k}} : \rho_r \in A_3 \right\} + |L|^{\frac{p_k}{k}} \inf \left\{ (\rho_s)^{\frac{p_k}{k}} : \rho_s \in A_4 \right\}
\]
\[
\leq \max \left\{ 1, |\lambda_k - L|^{\frac{p_k}{k}} \right\} g(x_k) + \max \left\{ 1, |L|^{\frac{p_k}{k}} \right\} g(x_k - x)
\]
\[
(2.14)
\]
Notice that \(g(x_k) \leq g(x) + g(x_k - x) \) for all \(k \in \mathbb{N} \). Hence by our assumption, the right hand side of (2.14) tends
to 0 as \(k \to \infty \) and the result follows.

For \(\mathcal{M}_{BV_\sigma}^I(M,p) \), the result is similar and hence omitted.

Theorem 2.3 Let \(M_1 \) and \(M_2 \) be two Orlicz functions and satisfying \(\Delta_2 \) – Condition, then

(a) \(\mathcal{X}(M_2,p) \subseteq \mathcal{X}(M_1M_2,p) \)

(b) \(\mathcal{X}(M_1,p) \cap (M_2,p) \subseteq \mathcal{X}(M_1 + M_2,p) \)

where \(\mathcal{X} = _0BV^I_\sigma, BV^I_\sigma, \mathcal{M}_{BV_\sigma}^I, \mathcal{M}_{BV_\sigma}^I \).

Proof. (a). Let \(x = (x_k) \in _0BV^I_\sigma(M_2) \) be any arbitrary element. Let \(\epsilon > 0 \) be given \(\Rightarrow \exists \rho > 0 \) such that

\[
\left\{ k \in \mathbb{N} : M_2 \left(\frac{\| \phi_{m,k}(x) \|}{\rho} \right)^{p_k} \geq \epsilon \right\} \in I.
\]

i.e.

\[
\left\{ k \in \mathbb{N} : M_2 \left(\frac{\| x_k \|}{\rho} \right)^{p_k} \geq \epsilon \right\} \in I,
\]

(2.15).

Let \(\epsilon > 0 \) and choose \(\delta \) with \(0 < \delta < 1 \) such that \(M_1(t) < \epsilon \), for \(0 \leq t \leq \delta \).

Let us write

\[
y_k = M_2 \left(\frac{\| x_k \|}{\rho} \right)^{p_k}
\]

and consider

\[
\lim_{k} M_1(y_k) = \lim_{y_k \leq \delta, k \in \mathbb{N}} M_1(y_k) + \lim_{y_k > \delta, k \in \mathbb{N}} M_1(y_k).
\]

Now, since \(M_1 \) is an Orlicz function, we have

\[
M_1(\lambda x) \leq \lambda M_1(x)
\]

for all \(\lambda \) with \(0 < \lambda < 1 \).

Therefore,

\[
\lim_{y_k \leq \delta, k \in \mathbb{N}} M_1(y_k) \leq M_1(2) \lim_{y_k \leq \delta, k \in \mathbb{N}} (y_k)
\]

(2.16)

For \(y_k > \delta \), we have \(y_k < \frac{y_k}{\delta} < 1 + \frac{y_k}{\delta} \).

Now, since \(M_1 \) is non-decreasing and convex, it follows that

\[
M_1(y_k) < M_1(1 + \frac{y_k}{\delta}) < \frac{1}{2} M_1(2) + \frac{1}{2} M_1(\frac{2y_k}{\delta})
\]

Again, since \(M_1 \) satisfies \(\Delta_2 \) – Condition, we have

\[
M_1(y_k) < \frac{1}{2} K \left(\frac{y_k}{\delta} \right) M_1(2) + \frac{1}{2} K \left(\frac{y_k}{\delta} \right) M_1(2).
\]

Thus,

\[
M_1(y_k) < K \left(\frac{y_k}{\delta} \right) M_1(2).
\]

Hence,

\[
\lim_{y_k > \delta, k \in \mathbb{N}} M_1(y_k) \leq \max \{ 1, K \delta^{-1} M_1(2) \} \lim_{y_k > \delta, k \in \mathbb{N}} (y_k).
\]

(2.17)

Therefore, from (2.15), (2.16) and (2.17), it follows that

\[
\left\{ k \in \mathbb{N} : M_1M_2 \left(\frac{\| \phi_{m,k}(x) \|}{\rho} \right)^{p_k} \geq \epsilon \right\} \in I,
\]

implies that \(x = (x_k) \in _0BV^I_\sigma(M_1M_2,p) \).

Therefore, \(_0BV^I_\sigma(M_2,p) \subseteq _0BV^I_\sigma(M_1M_2,p) \).

Hence, \(\mathcal{X}(M_2,p) \subseteq \mathcal{X}(M_1M_2,p) \) for \(\mathcal{X} = _0BV^I_\sigma \).

For \(\mathcal{X} = BV^I_\sigma, \mathcal{X} = \mathcal{M}_{BV_\sigma}^I, \mathcal{X} = \mathcal{M}_{BV_\sigma}^I \), the inclusions can be established similarly.

(b). Let \(x = (x_k) \in _0BV^I_\sigma(M_1,p) \cap _0BV^I_\sigma(M_2,p) \). Let \(\epsilon > 0 \) be given. Then there exists \(\rho > 0 \) such that the sets

\[
\left\{ k \in \mathbb{N} : M_1 \left(\frac{\| \phi_{m,k}(x) \|}{\rho} \right)^{p_k} \geq \epsilon \right\} \in I,
\]
and

\[
\left\{ k \in \mathbb{N} : M_2 \left(\frac{|\phi_{m,k}(x)|}{\rho} \right)^{p_k} \geq \epsilon \right\} \in I,
\]

Therefore, the inclusion

\[
\left\{ k \in \mathbb{N} : (M_1 + M_2) \left(\frac{|\phi_{m,k}(x)|}{\rho} \right)^{p_k} \geq \epsilon \right\} \subseteq \left[\left\{ k \in \mathbb{N} : M_1 \left(\frac{|\phi_{m,k}(x)|}{\rho} \right)^{p_k} \geq \epsilon \right\} \right]
\]

\[
\cup \left\{ k \in \mathbb{N} : M_2 \left(\frac{|\phi_{m,k}(x)|}{\rho} \right)^{p_k} \geq \epsilon \right\} \right] \right]
\]

implies that

\[
\left\{ k \in \mathbb{N} : (M_1 + M_2) \left(\frac{|\phi_{m,k}(x)|}{\rho} \right)^{p_k} \geq \epsilon \right\} \in I.
\]

showing that \(x = (x_k) \in _0BV^I_\sigma(M_1 + M_2, p) \)

Hence, \(_0BV^I_\sigma(M_1, p) \cap _0BV^I_\sigma(M_2, p) \subseteq _0BV^I_\sigma(M_1 + M_2, p) \)

For \(X = BV^I_\sigma, X = _0M^I_{BV_\sigma} \) and \(X = _1M^I_{BV_\sigma} \) the inclusions are similar.

For \(M_2(x) = x \) and \(M_1(x) = M(x) \), for all \(x \in [0, \infty) \), we have the following corollary.

Corollary. \(X \subseteq X(M, p) \) for \(X = _0BV^I_\sigma, BV^I_\sigma, _0M^I_{BV_\sigma} \) and \(_1M^I_{BV_\sigma} \).

Theorem 2.4. For any orlicz function \(M \), the spaces \(_0BV^I_\sigma(M, p) \) and \(_0M^I_{BV_\sigma}(M, p) \) are solid and monotone.

Proof. Here we consider \(_0BV^I_\sigma(M, p) \). For \(_0M^I_{BV_\sigma}(M, p) \), the proof shall be similar.

For, let \(x = (x_k) \in _0BV^I_\sigma(M, p) \) be any arbitrary element. \(\Rightarrow \) For \(\epsilon > 0 \), \(\exists \rho > 0 \) with

\[
\left\{ k \in \mathbb{N} : M \left(\frac{|\phi_{m,k}(x)|}{\rho} \right)^{p_k} \geq \epsilon \right\} \in I
\]

Let \((\alpha_k) \) be a sequence of scalars such that

\[
|\alpha_k| \leq 1, \text{ for all } k \in \mathbb{N}.
\]

Now, since \(M \) is an Orlicz function

We have,

\[
M \left(\frac{|\alpha_k \phi_{m,k}(x)|}{\rho} \right)^{p_k} \leq |\alpha_k| \left(\frac{\phi_{m,k}(x)}{\rho} \right)^{p_k} \leq M \left(\frac{\phi_{m,k}(x)}{\rho} \right)^{p_k}.
\]

Therefore,

\[
\left\{ k \in \mathbb{N} : M \left(\frac{|\alpha_k \phi_{m,k}(x)|}{\rho} \right)^{p_k} \geq \epsilon \right\} \subseteq \left\{ k \in \mathbb{N} : M \left(\frac{\phi_{m,k}(x)}{\rho} \right)^{p_k} \geq \epsilon \right\} \in I
\]

implies that

\[
\left\{ k \in \mathbb{N} : M \left(\frac{|\alpha_k \phi_{m,k}(x)|}{\rho} \right)^{p_k} \geq \epsilon \right\} \in I
\]

Thus, \((\alpha_k x_k) \in _0BV^I_\sigma(M, p) \).

Hence \(_0BV^I_\sigma(M, p) \) is solid

Therefore, by lemma(1) \(_0BV^I_\sigma(M) \) is monotone. Hence the result.
Theorem 2.5. The spaces $\mathcal{M}_{BV}^I(M, p)$ and $0\mathcal{M}_{BV}^I(M, p)$ are not separable.

Proof. By a counter example we prove the result for the space $\mathcal{M}_{BV}^I(M, p)$. For $0\mathcal{M}_{BV}^I(M, p)$, the result follows similarly.

Counter Example.
Let A be an infinite subset of increasing natural numbers such that $A \in I$.
Let
\[p_k = \begin{cases} 1, & \text{if } k \in A, \\ 2, & \text{otherwise}. \end{cases} \]

Let $P_0 = \{(x_k) : x_k = 0 \text{ or } 1, \text{ for } k \in M \text{ and } x_k = 0, \text{ otherwise}\}$.
Since A is infinite, so P_0 is uncountable. Consider the class of open balls $B_1 = \{B(z, \frac{1}{2}) : z \in P_0\}$.
Let C_1 be an open cover of $\mathcal{M}_{BV}^I(M, p)$ containing B_1.
Since B_1 is uncountable, so C_1 cannot be reduced to a countable subcover for $\mathcal{M}_{BV}^I(M, p)$. Thus $\mathcal{M}_{BV}^I(M, p)$ is not separable.

Theorem 2.6. Let $H = \sup_k p_k < \infty$ and I an admissible ideal. Then the following are equivalent.

(a) $x = (x_k) \in BV^I_\sigma(M, p)$;
(b) there exists $y = (y_k) \in BV_\sigma(M, p)$ such that $x_k = y_k$, for a.a.k.r.I;
(c) there exists $y = (y_k) \in BV_\sigma(M, p)$ and $z = (z_k) \in 0BV^I_\sigma(M, p)$ such that $x_k = y_k + z_k$ for all $k \in \mathbb{N}$ and
\[\{k \in \mathbb{N} : M\left(\frac{|y_k - L|}{\rho}\right)^{p_k} \geq \epsilon\} \in I; \]
(d) there exists a subset $K = \{k_1 < k_2, \ldots\}$ of \mathbb{N} such that $K \in \mathcal{L}(I)$ and
\[\lim_{n \to \infty} M\left(\frac{|z_{k_n} - L|}{\rho}\right)^{p_{k_n}} = 0. \]

Proof. (a) implies (b). Let $x = (x_k) \in BV^I_\sigma(M, p)$. Then there exists $L \in \mathbb{C}$ such that
\[\{k \in \mathbb{N} : M\left(\frac{|x_k - L|}{\rho}\right)^{p_k} \geq \epsilon\} \in I. \]

Let (m_t) be an increasing sequence with $m_t \in \mathbb{N}$ such that
\[\{k \leq m_t : M\left(\frac{|x_k - L|}{\rho}\right)^{p_k} \geq t^{-1}\} \in I. \]

Define a sequence (y_k) as
\[y_k = x_k, \text{ for all } k \leq m_1. \]

For $m_t < k \leq m_{t+1}$, $t \in \mathbb{N}.$
\[y_k = \begin{cases} x_k, & \text{if } M\left(\frac{|x_k - L|}{\rho}\right)^{p_k} < t^{-1} \\ L, & \text{otherwise}. \end{cases} \]

Then $y = (y_k) \in BV_\sigma(M, p)$ and form the following inclusion
\[\{k \leq m_t : x_k \neq y_k\} \subseteq \{k \leq m_t : M\left(\frac{|x_k - L|}{\rho}\right)^{p_k} \geq \epsilon\} \in I. \]

We get $x_k = y_k$, for a.a.k.r.I.

(b) implies (c). For $(x_k) \in BV^I_\sigma(M, p)$. Then there exists $(y_k) \in BV_\sigma(M, p)$ such that $x_k = y_k$, for a.a.k.r.I. Let $K = \{k \in \mathbb{N} : x_k \neq y_k\}$, then $K \in I$.
Define a sequence (z_k) as
\[z_k = \begin{cases} x_k - y_k, & \text{if } k \in K, \\ 0, & \text{otherwise}. \end{cases} \]
Then $z_k \in _0BV^I_\sigma(M, p)$ and $y_k \in BV_\sigma(M, p)$.

(c) implies (d). Suppose (c) holds. Let $\epsilon > 0$ be given. Let $P_1 = \{ k \in \mathbb{N} : M\left(\left|\frac{x_k' - L}{\rho}\right|^{p_k}\right) \geq \epsilon \} \in I$ and

$$K = P_1^c = \{ k_1 < k_2 < k_3 < \ldots \} \in L(I).$$

Then, we have $\lim_{n \to \infty} M\left(\left|\frac{x_k' - L}{\rho}\right|^{p_k}\right)_{k \leq n} = 0$.

(d) implies (a). Let $K = \{ k_1 < k_2 < k_3 < \ldots \} \in L(I)$ and $\lim_{n \to \infty} M\left(\left|\frac{x_k' - L}{\rho}\right|^{p_k}\right) = 0$.

Then, for any $\epsilon > 0$, and Lemma (II), we have

$$\left\{ k \in \mathbb{N} : M\left(\left|\frac{x_k' - L}{\rho}\right|^{p_k}\right) \geq \epsilon \right\} \subseteq K^c \cup \left\{ k \in \mathbb{N} : M\left(\left|\frac{x_k' - L}{\rho}\right|^{p_k}\right) \geq \epsilon \right\} \in I$$

implies that

$$\left\{ k \in \mathbb{N} : M\left(\left|\frac{x_k' - L}{\rho}\right|^{p_k}\right) \geq \epsilon \right\} \in I$$

Therefore, $(x_k) \in BV^I_\sigma(M, p)$.

Hence the result.

Theorem 2.7. Let $h = \inf_k p_k$ and $H = \sup_k p_k$. Then, the following results are equivalent. (a) $H < \infty$ and $h > 0$.

(b) $0BV^I_\sigma(M, p) = BV^I_\sigma$.

Proof. Suppose that $H < \infty$ and $h > 0$, then the inequalities $\min\{1, s^k\} \leq s^{p_k} \leq \max\{1, s^H\}$ hold for any $s > 0$ and for all $k \in \mathbb{N}$.

Therefore the equivalent of (a) and (b) is obvious.

Theorem 2.8. Let $p = (q_k)$ and $q = (q_k)$ be two sequences of positive real numbers. Then $0M^I_{BV_\sigma}(M, p) \supseteq 0M^I_{BV_\sigma}(M, q)$ if and only if $\lim \inf_{k \to K} \frac{p_k}{q_k} > 0$, where $K^c \subseteq \mathbb{N}$ such that $K \in I$.

Proof. Let $\lim \inf_{k \to K} \frac{p_k}{q_k} > 0$. and $(x_k) \in 0M^I_{BV_\sigma}(M, p)$. Then, there exists $\beta > 0$ such that $p_k > \beta q_k$, for all sufficiently large $k \in K$.

Since $(x_k) \in 0M^I_{BV_\sigma}(M, p)$.

For a given $\epsilon > 0$, $\exists \rho > 0$ such that

$$B_0 = \left\{ k \in \mathbb{N} : M\left(\left|\frac{x_k'}{\rho}\right|^{p_k}\right) \geq \epsilon \right\} \in I.$$

Let $G_0 = K^c \cup B_0$ Then $G_0 \in I$.

Then, for all sufficiently large $k \in G_0$,

$$\left\{ k \in \mathbb{N} : M\left(\left|\frac{x_k'}{\rho}\right|^{p_k}\right) \geq \epsilon \right\} \subseteq \left\{ k \in \mathbb{N} : M\left(\left|\frac{x_k'}{\rho}\right|^{\beta q_k}\right) \geq \epsilon \right\} \in I.$$

implies that

$$\left\{ k \in \mathbb{N} : M\left(\left|\frac{x_k'}{\rho}\right|^{p_k}\right) \geq \epsilon \right\} \in I$$

Therefore $(x_k) \in 0M^I_{BV_\sigma}(M, p)$.

Converse part of the result follows obviously.
Theorem 2.9. Let \(p = (p_k) \) and \(q = (q_k) \) be two sequences of positive real numbers. Then
\[
0\mathcal{M}^I_{BV_c}(M, q) \supseteq 0\mathcal{M}^I_{BV_c}(M, p)
\]
if and only if \(\liminf_{k \to k} \frac{q_k}{p_k} > 0 \), where \(K^c \subseteq \mathbb{N} \) such that \(K \in I \).

Proof. The proof follows similarly as the proof of Theorem 2.8.

Theorem 2.10. Let \(p = (p_k) \) and \(q = (q_k) \) be two sequences of positive real numbers. Then \(0\mathcal{M}^I_{BV_c}(M, p) = 0\mathcal{M}^I_{BV_c}(M, q) \) if and only if \(\liminf_{k \in K} \frac{p_k}{q_k} > 0 \), and \(\liminf_{k \in K} \frac{q_k}{p_k} > 0 \), where \(K^c \subseteq \mathbb{N} \) such that \(K \in I \).

Proof. On combining Theorem 2.9 and 2.10 we get the required result.

Theorem 2.11. The set \(\mathcal{M}^I_{BV_c}(M, p) \) is closed subspace of \(\ell_{\infty}(M, p) \).

Proof. Let \((x^{(i)}_k) \) be a Cauchy sequence in \(\mathcal{M}^I_{BV_c}(M, p) \) such that \(x^{(i)} \to x \).

We show that \(x \in \mathcal{M}^I_{BV_c}(M, p) \)

Since \((x^{(i)}_k) \in \mathcal{M}^I_{BV_c}(M, p) \), then there exists a sequence \(a_i \) and \(\rho > 0 \) such that
\[
\{k \in \mathbb{N} : M\left(\left| \frac{(x^{(i)}_k)^j - a_i}{\rho} \right| \right)^{p_k} \geq \epsilon \} \subseteq I
\]

We need to show that
1. \((a_i) \) converges to \(a \).
2. If \(U = \{k \in \mathbb{N} : M\left(\left| (x^{(i)}_k)^j - a_i \right| / \rho \right)^{p_k} < \epsilon \} \), then \(U^c \in I \).

1. Since \((x^{(i)}_k) \) is Cauchy sequence in \(\mathcal{M}^I_{BV_c}(M, p) \) \(\Rightarrow \) for a given \(\epsilon > 0 \), there exists \(k_0 \in \mathbb{N} \) such that
\[
\sup_k M\left(\left| \frac{(x^{(i)}_k)^j - (x^{(j)}_k)^j}{\rho} \right| \right)^{p_k} < \frac{\epsilon}{3}, \text{ for all } i, j \geq k_0.
\]

For \(\epsilon > 0 \), we have
\[
B_{ij} = \left\{ k \in \mathbb{N} : M\left(\left| \frac{(x^{(i)}_k)^j - (x^{(j)}_k)^j}{\rho} \right| \right)^{p_k} < \frac{\epsilon}{3} \right\}
\]
\[
B_i = \left\{ k \in \mathbb{N} : M\left(\left| \frac{(x^{(i)}_k)^j - a_i}{\rho} \right| \right)^{p_k} < \frac{\epsilon}{3} \right\}
\]
\[
B_j = \left\{ k \in \mathbb{N} : M\left(\left| \frac{(x^{(j)}_k)^j - a_j}{\rho} \right| \right)^{p_k} < \frac{\epsilon}{3} \right\}
\]

Then, \(B_{ij}^c, B_i^c, B_j^c \in I \)

Let \(B^c = B_{ij}^c \cup B_i^c \cup B_j^c \), where \(B = \left\{ k \in \mathbb{N} : M\left(\left| \frac{a_i - a_j}{\rho} \right| \right)^{p_k} < \epsilon \right\} \).

Then, \(B^c \in I \).

We choose \(k_0 \in B^c \).

Then for each \(i, j \geq k_0 \), we have
\[
\left\{ k \in \mathbb{N} : M\left(\left| \frac{a_i - a_j}{\rho} \right| \right)^{p_k} < \epsilon \right\} \supseteq \left\{ k \in \mathbb{N} : M\left(\left| \frac{a_i - a_i}{\rho} \right| \right)^{p_k} < \frac{\epsilon}{3} \right\}
\]
\[
\cap \left\{ k \in \mathbb{N} : M\left(\left| \frac{(x^{(i)}_k)^j - a_i}{\rho} \right| \right)^{p_k} < \frac{\epsilon}{3} \right\}
\]
Therefore, for each
\(k \in \mathbb{N} : M \left(\left| \frac{a_j - (x_j(k))^j}{\rho} \right|^{p_k} \right) < \frac{\epsilon}{3} \)
implies that
\((a_i)\) is a Cauchy sequence of scalars in \(C \), so there exists a scalar \(a \) in \(C \) such that \(a_i \to a \), as \(n \to \infty \).

(2) Let \(0 < \delta < 1 \) be given. Then we show that if
\[U = \{ k \in \mathbb{N} : M \left(\left| \frac{(x(k)^j)^j - a}{\rho} \right|^{p_k} \right) \leq \epsilon \} \], then \(U^c \in I \).
Since \(x(i) \to x \), then there exists \(q_0 \in \mathbb{N} \) such that
\[P = \left\{ k \in \mathbb{N} : M \left(\left| \frac{(x_k(q_0))^j - x_k}{\rho} \right|^{p_k} \right) < \left(\frac{\delta}{3D} \right)^H \right\} \] (2.21)
where \(D = \max\{1, 2^{G-1}\} \), \(G = \sup p_k \geq 0 \) and \(H = \max\{1, \sup p_k \} \)
implies \(P^c \in I \).
The number \(q_0 \) can be chosen that together with (2.21), we have
\[Q = \left\{ k \in \mathbb{N} : M \left(\left| \frac{a_{q_0} - a}{\rho} \right|^{p_k} \right) < \left(\frac{\delta}{3D} \right)^H \right\} \]
such that \(Q^c \in I \).
Since
\[\left\{ k \in \mathbb{N} : M \left(\left| \frac{(x_k(q_0)^j)^j - a_{q_0}}{\rho} \right|^{p_k} \right) \geq \delta \right\} \in I. \]
Then, we have a subset \(S \) of \(\mathbb{N} \) such that \(S^c \in I \), where
\[S = \left\{ k \in \mathbb{N} : M \left(\left| \frac{(x_k(q_0)^j)^j - a_{q_0}}{\rho} \right|^{p_k} \right) < \left(\frac{\delta}{3D} \right)^H \right\}. \]
Let \(U^c = P^c \cup Q^c \cup S^c \), where
\[U = \left\{ k \in \mathbb{N} : M \left(\left| \frac{x_k - a}{\rho} \right|^{p_k} \right) < \delta \right\} \]
Therefore, for each \(k \in U^c \), we have
\[\left\{ k \in \mathbb{N} : M \left(\left| \frac{(x_k(q_0)^j)^j - a_{q_0}}{\rho} \right|^{p_k} \right) < \delta \right\} \subseteq \left[\left\{ k \in \mathbb{N} : M \left(\left| \frac{(x_k(q_0)^j - x_k)^j}{\rho} \right|^{p_k} \right) < \left(\frac{\delta}{3D} \right)^H \right\} \right. \]
\[\cap \left\{ k \in \mathbb{N} : M \left(\left| \frac{a_{q_0} - a}{\rho} \right|^{p_k} \right) < \left(\frac{\delta}{3D} \right)^H \right\} \]
\[\cap \left\{ k \in \mathbb{N} : M \left(\left| \frac{(x_k(q_0)^j)^j - a_{q_0}}{\rho} \right|^{p_k} \right) < \left(\frac{\delta}{3D} \right)^H \right\} \].
Then the result follows.
Since the inclusions \(\mathcal{M}_{BV}^I(M,p) \subset \ell_\infty(M,p) \) and \(\mathcal{M}_{BV}^\ell(M,p) \subset \ell_\infty(M,p) \) are strict so in view of Theorem (2.11) we have the following result.

Theorem 2.12. The spaces \(\mathcal{M}_{BV}^I(M,p) \) and \(\mathcal{M}_{BV}^\ell(M,p) \) are nowhere dense subsets of \(\ell_\infty(M,p) \).

Theorem 2.13. For an Orlicz function \(M \), the spaces \(\mathcal{M}_{BV}^I(M,p) \) and \(\mathcal{M}_{BV}^\ell(M,p) \) are sequence algebra.

Proof. Here we consider \(\mathcal{M}_{BV}^I(M,p) \). For the other result the proof is similar.
Let \(x = (x_k), y = (y_k) \in \mathcal{M}_{BV}^I(M,p) \) be any two arbitrary elements.
⇒ ∃ ρ₁, ρ₂ > 0 such that
\[
\left\{ k \in \mathbb{N} : M \left(\frac{|φ_{m,k}(x)|}{ρ_1} \geq ϵ \right)^{p_k} \right\} \in I. \tag{2.22}
\]
and
\[
\left\{ k \in \mathbb{N} : M \left(\frac{|φ_{m,k}(y)|}{ρ_1} \geq ϵ \right)^{p_k} \right\} \in I. \tag{2.23}
\]

Let ρ = ρ₁ρ₂ > 0
Then, it is obvious from (2.22) and (2.23) that
\[
\left\{ k \in \mathbb{N} : M \left(\frac{|φ_{m,k}(x)φ_{m,k}(y)|}{ρ} \geq ϵ \right)^{p_k} \right\} \in I.
\]
which further implies that \((x_k, y_k) = (x_k y_k) \in _0BV^I_σ(M, p)\)
Hence, \(_0BV^I_σ(M, p)\) is a Sequence algebra.

Theorem 2.11. Let \(M\) be an Orlicz function. Then, \(_0BV^I_σ(M, p) \subset BV^I_σ(M, p) \subset ∞BV^I_σ(M, p)\).

Proof. Let \(M\) be an Orlicz function. Then, we have to show that \(_0BV^I_σ(M, p) \subset BV^I_σ(M, p) \subset ∞BV^I_σ(M, p)\).
Firstly, \(_0BV^I_σ(M) \subset BV^I_σ(M)\) is obvious.
Let \(x = (x_k) \in BV^I_σ(M, p)\). Then there exists \(L \in \mathbb{C}\) and \(ρ > 0\) such that
\[
\left\{ k \in \mathbb{N} : M \left(\frac{|x_k - L|}{ρ} \right)^{p_k} \geq ϵ \right\} \in I.
\]
That is
\[
I - \lim M \left(\frac{|x_k - L|}{ρ} \right)^{p_k} = 0.
\]
Therefore, we have
\[
M \left(\frac{|x_k|}{2ρ} \right)^{p_k} \leq \frac{1}{2} M \left(\frac{|x_k - L|}{ρ} \right)^{p_k} + \frac{1}{2} M \left(\frac{|L|}{ρ} \right)^{p_k}.
\]
Taking supremum over \(k\) both sides, we get \(x = (x_k) \in ∞BV^I_σ(M, p)\).
Hence, \(_0BV^I_σ(M, p) \subset BV^I_σ(M, p) \subset ∞BV^I_σ(M, p)\).

Theorem 2.15. If \(I\) is not maximal and \(I \neq I_f\). Then, the space \(_0BV^I_σ(M, p)\) and \(BV^I_σ(M, p)\) are not symmetric.

Proof. Let \(A ∈ I\) be any infinite set and \(M(x) = x\), for all \(x \in [0, ∞)\).
Define a sequence \((x_k)\) as
\[
x_k = \begin{cases}
1, & \text{if } k \in A, \\
0, & \text{otherwise}.
\end{cases}
\]

Then, it is clear that \((x_k) \in _0BV^I_σ(M, p) \subset BV^I_σ(M, p)\)
Let \(K ⊆ \mathbb{N}\) be such that \(K \notin I\) and \(\mathbb{N} \setminus K \notin I\).
Let \(φ : K \rightarrow A\) and \(ψ : K^c \rightarrow A^c\) be bijective maps. Then, the mapping \(π : \mathbb{N} \rightarrow \mathbb{N}\) defined by
\[
π(k) = \begin{cases}
φ(k), & \text{if } k ∈ K, \\
ψk, & \text{otherwise}.
\end{cases}
\]
is a permutation on \(\mathbb{N}\)
But \((x_\pi(k)) \notin BV^I_\sigma(M,p)\) and hence \((x_\pi(k)) \notin 0BV^I_\sigma(M,p)\) showing that
\[BV^I_\sigma(M,p) \text{ and } 0BV^I_\sigma(M,p)\]
are not symmetric sequence spaces.

Acknowledgements

The authors would like to record their gratitude to the reviewer for his careful reading and making some useful corrections which improved the presentation of the paper.

References

