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Abstract

In this paper we introduce and study the concepts of almost convergence and almost Cauchy for triple sequences.We
show that the set of almost convergent triple sequences of 0’s and 1’s is of the first category and also almost every
triple sequence of 0’s and 1’s is not almost convergent.
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1. Introduction

Before we enter the motivation for this paper and the presentation of the main results we give some preliminaries.
The concept of almost convergence of sequences of real numbers x = (xn) was introduced and firstly studied by

Lorentz [2]. A sequence x = (xn) almost converges to the number L if for every ε > 0 there exists N ∈ N such that
∣∣∣∣∣
1
k

k−1∑

i=0

xn+i − L

∣∣∣∣∣ < ε, for all k > N and for all n ∈ N.

By the convergence of a double sequence we mean the convergence on the Pringsheim sense that is, a double
sequence x = (xn,m) has Pringsheim limit L (denoted by P − limx = L) provided that given ε > 0 there exists
N ∈ N such that |xn,m − L| < ε whenever n,m > N, [4]. We shall write more briefly as ”P -convergent”.

Later, Moricz and Rhoades [3] have expanded the definition of almost convergence to double sequences as follows:
A double sequence x = (xn,m) of real numbers is called almost P -convergent to a limit L if,

P − lim
p,q→∞

1
pq

s+p−1∑
n=s

t+q−1∑
m=t

|xn,m − L| = 0

that is, the average value of (xn,m) taken over any rectangle

{(n,m) : s ≤ n ≤ s + p− 1, t ≤ m ≤ t + q − 1}
tends to L as both p and q tend to infinity, and this P -convergence is uniform in s and t.

In 2007, Cunjalo [1] studied the definition of almost Cauchy and showed that the set of almost convergent
double sequences of 0’s and 1’s is of the first category and almost every double sequences of 0’s and 1’s is not almost
convergent.
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2. Definitions and Results

Let X denote the set of all triple sequences of 0’s and 1’s, namely

X = {x = (xn,m,l) : xn,m,l ∈ {0, 1} , n,m, l ∈ N} .

Let B be the smallest σ−algebra of subsets of the set X which contains all sets of the form:

{x = (xn,m,l) ∈ X : xn,m,l = a1, xn1,m1,l1 = a2, ..., xnk,mk,lk = ak} , a1, a2, ..., ak ∈ {0, 1} , k ∈ N.

There exists the unique Lebesgue measure R on the set X, such that

R ({x = (xn,m,l) ∈ X : xn,m,l = a1, xn1,m1,l1 = a2, ..., xnk,mk,lk = ak}) =
1
2k

where a1, a2, ..., ak ∈ {0, 1} , k ∈ N.
The set X equipped with the metric d : X ×X → R+,

d (x, y) =
∞∑

n=0

∞∑
m=0

∞∑

l=0

|xnml − ynml|
2n+m+l

,

is a complete metric space. Therefore, X is of the second category. The aim of this paper is to generalize Cunjalo’s
results for triple sequences.

Definition 2.1 The triple sequence x = (xn,m,l) almost converges to L, if for every ε > 0, ∃N ∈ N such that
∣∣∣∣∣∣

1
pqr

p−1∑

i=0

q−1∑

j=0

r−1∑

k=0

xn+i,m+j,l+k − L

∣∣∣∣∣∣
< ε

for all p, q, r > N and all (n,m, l) ∈ N× N× N.

Definition 2.2 The triple sequence x = (xn,m,l) is almost Cauchy, if for every ε > 0, ∃N ∈ N such that
∣∣∣∣∣∣

1
p1q1r1

p1−1∑

i=0

q1−1∑

j=0

r1−1∑

k=0

xn1+i,m1+j,l1+k − 1
p2q2r2

p2−1∑

i=0

q2−1∑

j=0

r2−1∑

k=0

xn2+i,m2+j,l2+k

∣∣∣∣∣∣
< ε

for all p1, p2, q1, q2, r1, r2 > N and all (n1,m1, l1) , (n2,m2, l2) ∈ N× N× N.

Lemma 2.3 The triple sequence x = (xn,m,l) is almost convergent if and only if it is almost Cauchy.

Proof. Suppose that the triple sequence x = (xn,m,l) is almost convergent to L. Then, for every ε > 0, ∃N ∈ N
such that
∣∣∣∣∣∣

1
pqr

p−1∑

i=0

q−1∑

j=0

r−1∑

k=0

xn+i,m+j,l+k − L

∣∣∣∣∣∣
< ε

for all p, q, r > N and all (n, m, l) ∈ N× N× N. Therefore
∣∣∣∣∣∣

1
p1q1r1

p1−1∑

i=0

q1−1∑

j=0

r1−1∑

k=0

xn1+i,m1+j,l1+k − 1
p2q2r2

p2−1∑

i=0

q2−1∑

j=0

r2−1∑

k=0

xn2+i,m2+j,l2+k

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

1
p1q1r1

p1−1∑

i=0

q1−1∑

j=0

r1−1∑

k=0

xn1+i,m1+j,l1+k − L

∣∣∣∣∣∣
+

∣∣∣∣∣∣
1

p2q2r2

p2−1∑

i=0

q2−1∑

j=0

r2−1∑

k=0

xn2+i,m2+j,l2+k − L

∣∣∣∣∣∣

<
ε

2
+

ε

2
= ε
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for all p1, p2, q1, q2, r1, r2 > N and all (n1,m1, l1) , (n2,m2, l2) ∈ N×N×N. Hence, the triple sequence x = (xn,m,l)
is almost Cauchy.

Now, suppose that x = (xn,m,l) is almost Cauchy. Then, for every ε > 0, ∃N ∈ N such that
∣∣∣∣∣∣

1
p1q1r1

p1−1∑

i=0

q1−1∑

j=0

r1−1∑

k=0

xn1+i,m1+j,l1+k − 1
p2q2r2

p2−1∑

i=0

q2−1∑

j=0

r2−1∑

k=0

xn2+i,m2+j,l2+k

∣∣∣∣∣∣
<

ε

2
(1)

for all p1, p2, q1, q2, r1, r2 > N and all (n1,m1, l1) , (n2,m2, l2) ∈ N × N × N. Taking n1 = n2 = no,m1 = m2 = mo

and l1 = l2 = lo in relation (1), we obtain that

 1

pqr

p−1∑

i=0

q−1∑

j=0

r−1∑

k=0

xnı+i,mı+j,lı+k



∞

p,q,r=1

is a Cauchy sequence in C, the set of complex numbers, and therefore it is convergent since C is complete. Let

P − lim
p,q,r→∞

1
pqr

p−1∑

i=0

q−1∑

j=0

r−1∑

k=0

xnı+i,mı+j,lı+k = L.

Then, for every ε > 0, ∃N1 ∈ N such that
∣∣∣∣∣∣

1
pqr

p−1∑

i=0

q−1∑

j=0

r−1∑

k=0

xnı+i,mı+j,lı+k − L

∣∣∣∣∣∣
<

ε

2

for all p, q, r > N1. It follows that
∣∣∣∣∣∣

1
pqr

p−1∑

i=0

q−1∑

j=0

r−1∑

k=0

xn+i,m+j,l+k − L

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

1
pqr

p−1∑

i=0

q−1∑

j=0

r−1∑

k=0

xn+i,m+j,l+k − 1
pqr

p−1∑

i=0

q−1∑

j=0

r−1∑

k=0

xnı+i,mı+j,lı+k

∣∣∣∣∣∣

+

∣∣∣∣∣∣
1

pqr

p−1∑

i=0

q−1∑

j=0

r−1∑

k=0

xnı+i,mı+j,lı+k − L

∣∣∣∣∣∣
<

ε

2
+

ε

2
= ε

for all p, q, r > max (N,N1) and for all (n, m, l) ∈ N×N×N. So, the triple sequence x = (xn,m,l) is almost convergent
to L. This completes the proof.

Theorem 2.4 The set

V = {x ∈ X : x = (xn,m,l) is almost convergent }

is of the first category.

Proof. Due to Lemma 2.3, the set V can be represented in the form

V = ∩∞s=1 ∪∞t=1 ∩∞p1,p2 = t
q1,q2 = t
r1,r2 = t

∩∞
n1,n2 = 1
m1,m2 = 1
l1,l2 = 1

{
x ∈ X :

∣∣∣Dp1,q1,r1
n1,m1,l1

(x)−D
p2,q2,r2
n2,m2,l2

(x)
∣∣∣ <

1
s

}

where

Dp,q,r
n,m,l (x) =

1
pqr

p−1∑

i=0

q−1∑

j=0

r−1∑

k=0

xn+i,m+j,l+k.
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Now, let

T = {x ∈ X : xn,m,l = 1 for finitely many (n,m, l) ∈ N× N× N} .

The set T is everywhere dense in X. For arbitrary y ∈ T, ∃n1,m1, l1, p1, q1, r1 ∈ N and p1, q1, r1 > t such that

{(n,m, l) : yn,m,l = 1} ⊂ {(n,m, l) : n1 ≤ n < n1 + p1,m1 ≤ m < m1 + q1, l1 ≤ l < l1 + r1} ,

D
p1,q1,r1
n1,m1,l1

(y) ≤ 1
3so

.

Let z = (zn,m,l) ∈ T such that

znml = {ynml, n1 ≤ n < n1 + p1,m1 ≤ m < m1 + q1, l1 ≤ l < l1 + r1

1, n2 ≤ n < n2 + p2,m2 ≤ m < m2 + q2, l2 ≤ l < l2 + r2

where n2 > n1 + p1,m2 > m1 + q1, l2 > l1 + r1. Then
∣∣∣Dp1,q1,r1

n1,m1,l1
(z)−D

p2,q2,r2
n2,m2,l2

(z)
∣∣∣ >

1
so

.

Now, let z′ =
(
z′n,m,l

)
∈ X with the property z′n,m,l = zn,m,l on the set

{(n,m, l) : n1 ≤ n < n1 + p1,m1 ≤ m < m1 + q1, l1 ≤ l < l1 + r1}

∪ {(n,m, l) : n2 ≤ n < n2 + p2,m2 ≤ m < m2 + q2, l2 ≤ l < l2 + r2} ,
∣∣∣Dp1,q1,r1

n1,m1,l1
(z′)−D

p2,q2,r2
n2,m2,l2

(z′)
∣∣∣ >

1
so

.

Therefore, the set of all triple sequences z′ contains open neighbourhood of y ∈ T which does not intersect the set

∩∞
p1,p2 = t
q1,q2 = t
r1,r2 = t

∩∞
n1,n2 = 1
m1,m2 = 1
l1,l2 = 1

{
x ∈ X :

∣∣∣Dp1,q1,r1
n1,m1,l1

(x)−D
p2,q2,r2
n2,m2,l2

(x)
∣∣∣ <

1
s

}
(2)

for fixed t and s = so. Therefore the set (2) is nowhere dense. Hence, the set V is of the first category. This
completes the proof.

Theorem 2.5 Almost every x ∈ X is not almost convergent, i.e.,

R (V ) = R ({x ∈ X : x = (xn,m,l) almost convergent }) = 0.

Proof. Let

At
s = {x ∈ X : xn,m,l = 1, st ≤ n < st + s− 1, st ≤ m < st + s− 1, st ≤ l < st + s− 1} .

The sets At
s (s, t ∈ N) are independent. Since R (At

s) = 1
2s3 for all t ∈ N, we have

∞∑
t=1

R
(
At

s

)
=

∞∑
t=1

1
2s3 = ∞.

Therefore, due to the second Borel-Cantelli Lemma,

R

(
lim sup

t→∞
At

s

)
= 1.

Let As = lim supt→∞At
s and A = ∩∞s=1As,then R (A) = 1. This implies

A8 {x ∈ X : x = (xn,m,l) almost convergent to 1}

⊂ {x ∈ X : x = (xn,m,l) not almost convergent }
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and

{x ∈ X : x = (xn,m,l) almost convergent to 1}

⊂


x ∈ X : P − lim

n,m,l→∞

n∑

i=1

m∑

j=1

l∑

k=1

xijk = 1



 .

Since

R






x ∈ X : P − lim

n,m,l→∞

n∑

i=1

m∑

j=1

l∑

k=1

xijk = 1






 = 0

it is

R ({x ∈ X : x = (xn,m,l) not almost convergent }) = 0.

This completes the proof.
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