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Abstract 

 

The rank of the fundamental group,     , of a connected graph    is related to the Euler characteristic,     , of   by  

                in this article, the Euler characteristic of the     iterated line graph of   and its complement    is 

studied. 
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1. Introduction 

We follow [2] for graph theoretical terminologies and notations that are not defined here. Graphs considered in this 

paper are finite and simple connected graphs (without loops and parallel edges). In general,    refers to the set of 

vertices of a graph  , and    refers to the edges of  . The number of vertices and edges of G are denoted by      and 

     respectively. The fundamental group is a much studied topic in elementary topology. As graphs are also 

topological spaces [4], many authors investigated the fundamental group structure of an arbitrary graph G ([5], [6], [8], 

[10]). If   is a connected graph has     vertices and     edges, the number                  is the rank of the 

fundamental group of G [6] and is related to the Euler characteristic,      , of G by                [4]. This value 

equals the Betti number      , which is nonnegative for connected G and was one of the first numerical characteristics 

of a graph. Also some connections between the fundamental group of a graph, the genus of the graph, and the number 

of components of a 2-manifold in which   can be embedded are introduced in [3]. In [1], the number       was defined 

as the number of independent cycles for some  . In this article, the Euler characteristic of the ith iterated line graph of   

and its complement    is studied. 

2. Euler characteristic of  L G  

For a graph  , the line graph      is a graph whose vertices can be put in a one-to-one correspondence with the edges 

of  , in such a way that two vertices  in      are adjacent if and only if the corresponding edges of   are adjacent. The 

concept has been rediscovered several times, with different names such as derived graph, interchange graph [9, 11], and 

edge-to-vertex dual. We iterate the line graph of   in the natural way by setting                    where      

 . If      is the degree of a vertex   and                       denote the number of vertices and edges of   and      

respectively, then clearly,           and it is well known that [1] 
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Now for      we have   

                  

                                                                                                       
 

 
               

                    

                                                                                                    
 

 
          

                                                        (2) 

For a regular graph   of degree   , every vertex      corresponding to an edge          has degree equals 

           . Thus      is regular of degree        
 

We put the following facts in the form of a lemma, which comes immediately from the definition of Euler characteristic 

of  . 

 

Lemma 2.1: Let   be a   - regular graph with   vertices, then 

a)      
      

 
   

b)                
  

Lemma 2.2: Let   be a   - regular graph with   vertices, then                         
 

Proof: Since      is a        -regular graph with 
  

 
 vertices. By equation (1),         

 

 
      

  

 
 

  

 
       

Therefore,       is a regular graph contains         vertices of degree     . Hence, by lemma 2.1, we conclude that  

          

 
 
  

 
                          

 
                □ 

 

Now we move on to generalize lemma 2.2. Let   be a   - regular graph with   vertices. For    , assume     denotes 

the degree of the regular graph       such that             and       
 

Theorem 2.3:                           

 

Proof: Straightforward. 

3. Euler characteristic of G  

The complement    of a graph   has the same vertices as  , and every pair of vertices is joined by an edge in    if and 

only if they are not joined in  . It is known that          but this is not enough to say                            
a self-complementary graph   is one that is isomorphic to its complement.  

 

The following results are straightforward, and are not stated explicitly by any author. However, they are all useful in 

proving other results. For a complete graph    and      
  we define      to be a vertex      of degree      

           
 

Proposition 3.1: Let         then         
 
        

Proof: Notice that   has     vertices of degree     and 2 vertices of degree      Hence,      has 
      

 
   

vertices and       edges comes by equation (1) as follows: 

      
 

 
       

    
      

 

 
                        

      

 
    

 
 

 
               

 

 
          

 

 
              

 
 

 
                    

      

 
    

 
 

 
                      

By lemma 2.1, this becomes 

               
        

This implies,          
 
        □ 
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We say that a tree   is a spanning subgraph of    if        [2]. Let         be obtained by deleting all edges of 

   It is obvious that,    may be has isolated vertices when            for some       
 

Theorem 3.2: Let   be a spanning tree in    such that         for all        Then 

         
               

 
  

Proof: Since        for all    , then         have  
          

 
 vertices,     of them of degree     and 

two vertices of degree      By equation (1), we have 

         
 

 
                       

      

 
        

 
 

 
                 

 

 
             

                                                        
 

 
                 

 

 
               

Now, we conclude that 

                                                 
          

 
 

           

 
 

               

 
   □ 

 

Let   be an induced subgraph of     and         be obtained by deleting all edges of    A graph   that has some 

isolated vertices  and is therefore disconnected, may nevertheless have a connected line graph. So, we assume that 

          for all       the following theorem generalizes the previous result. 

 

Theorem 3.3: Let          Then 

a)                
           

b)                
                      

 

Proof: (a) Since   is a complete subgraph [2]. Then, we assume   has     vertices and 
      

 
 edges. It follows that 

     contains      vertices of degree     and   vertices of degree                therefore,         

has [
      

 
 

      

 
  vertices. 

 (b) By equation (1), we get 

            
 

 
                       

      

 
 

      

 
  

                             
 

 
                         

 

 
            

 
 

 
                              

                                  
 

 
            

 

 
            

 

 
                  

                                                         
 

 
            

 

 
             

 

 
              . 

By lemma 2.1, we get 

                                                                             □ 

 

From the preceding discussion and theorem 3.3, we summarize with.  

 

Theorem 3.4: Let   be a graph (may be disconnected) with   vertices such that          for all       Then 

a)                 
           

b)                 
                      

4. Some applications 

The maximum genus of a connected graph  , denoted by  
 
   , is the maximum integer   with the property that there 

exists a cellular embedding of   on the orientable surface with genus  . The maximum genus of many kinds of graphs 

in terms of some graph invariants such as connectivity, diameter, girth, and chromatic number and The Betti number 
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     are investigated [5]. In theory, the deciding problem of genus of a graph is always difficult [Deciding the genus of 

a graph is NP-complete, 5]. Authors in [6], studied the relations between the maximum genus and the matching number 

and they showed that they are coincident for some graphs. In [14], lower bounds on the maximum genus of connected 

4-regular simple graphs and connected 4-regular graphs without loops are calculated in terms of the Betti number. Since 

The Betti number      equals the rank of the fundamental group       so lower bounds on the maximum genus of 

graphs may be obtained in terms of       
 

By lemma 2.1, the following corollary comes directly from theorem A in [14]. 

 

Corollary 4.1: If   is a connected 4-regular simple graph with n vertices, then 

 
 
       

  

 
   

 

Authors in [13], proved the next result for    . We consider the general case as an application of the above results. 

 

Corollary 4.2:            implies that            . 
 

Proof: We use induction on    when      suppose          , this implies that               . From lemma 

2.1, we have 
           

 
 

      

 
. Thus the number of vertices in    equals 2, i.e.      this means that the complete 

graph must be     Hence,               Suppose by the inductive hypothesis that,              implies 

that                   Assume that             Then                 and by theorem 2.3, we have       

              
                              . But                yields the desired result. □ 

 

It is well known that the fundamental group of a graph   is trivial if and only if    is a tree [4]. The following result is   

a direct application of theorem 3.2. 

 

Corollary 4.3:  Let   be a spanning tree in
 
  Such that         for all     , then        is a tree if and only 

if         . 

 

Proof: Assume that        is a tree, then           
               

 
    Simple counting arguments shows that

1, 3, 4.n  This means        is a tree only in case of     is a vertex, a triangle or   . □ 

 

Corollary 4.4: If   is a self-complementary graph, then      
            

 
  

 

Proof: Since   is isomorphic to    , then  (G) is isomorphic to      . By part (a) of theorem 3.4,we have  

                                       . 

This becomes,      
            

 
     . Hence, we have 

     
            

 
. □ 

 

Corollary 4.5: Let   be a regular graph of degree   with   vertices. If              then     . 

 

Proof: Suppose   consists of   components, then clearly       also has    components. But     consists of only one 

component; hence we must have     , i.e.,    is a connected graph. Since          implies that              . 

Then we get 
       

 
     

      

 
 

  

 
  . This become           . Since there is no connected graph consists 

of   vertices with degree one. Therefore, we consider     and consequently    . Since          means that 

        
  

 
          hence we must have      . We conclude that       and       are the only possible          

2-regular graph in this case. □ 
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