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Abstract

It is shown that a Hausdorff topological vector space E is fuzzy normable iff its topology is a metrizable locally
convex topology. Subspaces, product and quotient spaces of fuzzy normed spaces are investigated. Also the notion
of the tensor product of two fuzzy normed norms is introduced and it is proved that the induced locally convex
topology coincides with the projective tensor product topology.
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1 Introduction

A notion of a fuzzy norm, on a real or convex linear space, was for the first time introduced by the author in [12].
Several other authors gave some other definitions of a fuzzy norm. In this paper we use a definition of a fuzzy
norm which is analogous, but not exactly the same, with the one used by T. Bag and S. K. Samanta in [2]. In our
definition, a fuzzy seminorm, on a vector space E, is a map N from E to the family D(R+) of all fuzzy subsets ξ of
R+ which are increasing, left continuous and such that ξ(0) = 0 and limt→∞ ξ(t) = 1. Each fuzzy seminorm N on
E induces a pseudometrizable locally convex topology τN on E. This topology is Hausdorff iff N is a fuzzy norm.
Several properties of the topology τN are investigated. We prove that a Hausdorff topological vector space is fuzzy
normable iff it is metrizable and locally convex. We show that every continuous fuzzy seminorm on a subspace of
a locally convex space E has a continuous extension to all of E. For a complete fuzzy normed space E we give a
fixed point theorem which is analogous to the one that holds for contraction mappings on complete metric spaces.
We also show that a fuzzy normed space (E,N) is complete iff , for each sequence (xn) of elements of E, for which
the supremum

∨
n

⊕n
k=1N(xn) exists in D(R+), the series

∑∞
n=1 xn converges in E. This result is analogous to

the one that characterizes the Banach spaces. For a fuzzy normed space (E,N) we give a necessary and sufficient
condition for a linear functional on (E,N) or a linear map from (E,N) to a locally convex space F , to be continuous.
We also give the Hahn Banach theorem for the continuous extensions of continuous linear functionals. Next we
study subspaces, product and quotient spaces of fuzzy normed spaces. For a sequence (En, Nn) of fuzzy seminormed
spaces, we define a fuzzy seminorm N on the cartesian product

∏∞
n=1En for which the corresponding locally convex

topology is the product topology. Finally, for (E,N1) and (F,N2) fuzzy seminormed spaces, we define the tensor
product fuzzy seminorm N = N1 ⊗ N2 on the tensor product E ⊗ F and show that τN is the projective tensor
product of the topologies τN1 and τN2.

2 Preliminaries

Let D(R+) denote the family of all fuzzy subsets ξ of R+ = [0,∞) which are increasing, left continuous and such
that ξ(0) = 0 and limt→∞ ξ(t) = 1. For a non-negative real number r, we denote by r̃ the element of D(R+) defined
by r̃(t) = 0, for t ≤ r, and r̃(t) = 1 when t > r. For ξ ∈ D(R+) and r ≥ 0, rξ is defined by rξ = 0̃, when r = 0,
and (rξ)(t) = ξ(r−1t) if r > 0. We make D(R+) into a directed set by defining ξη iff ξ(t) ≥ η(t) for all t ≥ 0. For
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ξ, η ∈ D(R+), the elements ξ ⊕ η and ξ � η are defined by :

ξ ⊕ η(t) = sup{ξ(t1 ∧ η(t2) : t = t1 + t2},

ξ � η(t) =

{
0 if t = 0,
sup{ξ(s) ∧ η(t/s) : s > 0} if t > 0.

For ξ ∈ D(R+) and p > 0 we define ξp by ξp(t) = ξ(t1/p). Clearly ξp ∈ D(R+). We get easily the following

Lemma 2.1 1. (ξ1 � ξ2)p = ξp1 � ξ
p
2 .

2. ξp1+p2 = ξp1 � ξp2 .

3. (ξp1)p2 = ξp1p2 .

For ξ1, . . . , ξn, we define inductively
⊕nk=1ξk = [⊕n−1

k=1ξk]⊕ ξn.
We get easily that

⊕nk=1ξk(t) = sup

{
n∧
k=1

ξk(tk) : t =

n∑
k=1

tk

}
.

Let A be a non-empty subset of D(R+). An element η of D(R+ is said to be an upper bound (resp. a lower
bound) of A if ξ � η (resp. η � ξ) for all ξ ∈ A. Since 0̃ � ξ for all ξ, A is always bounded from below. If ξo is
defined by

ξo(t) = sup{ξ(t) : ξ ∈ A},
then ξo is the greatest lower bound of A and it is denoted by inf A or by

∧
A.

Lemma 2.2 A non-empty subset A of D(R+) is bounded from above iff

lim
t→∞

inf
ξ∈A

ξ(t) = 1.

If A is such a set and if

ηo(t) =

{
0 for t=0,
sup0<s<t infξ∈A ξ(s), if t > 0,

then ηo is the smallest upper bound of A
Proof. If A has an upper bound η, then infξ∈A ξ(t) ≥ η(t) and hence

lim
t→∞

inf
ξ∈A

ξ(t) = 1.

Conversely, assume that the condition is satisfied and define ηo as in the Lemma. Then ηo is clearly increasing and,
using the condition, limt→∞ ηo(t) = 1. Also ηo is left continuous. Indeed, suppose that ηo(t) > α > 0. There exists
0 < s < t such that infξ∈A ξ(s) > α. If now s < t1 < t, then ηo(t1) > α, which proves that ηo is left continuous.
Clearly ηo is an upper bound for A. Given any upper bound η and η(t) > α, there exists 0 < s < t with η(s) > α.
Now ηo(t) ≥ infξ∈A ξ(s) ≥ η(s) > α, which proves that ηo(t) ≥ η(t), for all t, and hence ηo � η. Therefore ηo is the
smallest upper bound for A.

For a non-empty bounded subset A of D(R+), we will denote by supA or by
∨
A the least upper bound of A.

We omit the proof of the following easily established

Lemma 2.3 1. For c ≥ 0 and ξ, η, ξk ∈ D(R+) we have

c · ⊕nk=1ξk = ⊕nk=1cξk and c · (ξ � η) = (cξ)� η = ξ � (cη).

2. Fort c ≥ 0 and p > 0, we have (cξ)p = cpξp.

3. For a family {ξi : i ∈ I} of elements of D(R+), c ≥ 0 and ξ ∈ D(R+), we have

c ·
∧
i∈I

ξi =
∧
i∈I

cξi, ξ ⊕
∧
i∈I

ξi =
∧
ξ ⊕ ξi.

4. If {ξi : i ∈ I} is a bounded family of elements of D(R+), c ≥ 0 and ξ ∈ D(R+), then

ξ ⊕
∨
i

ξi =
∨
i

ξ ⊕ ξi, c ·
∨
i∈I

ξi =
∨
i∈I

cξi.
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3 Fuzzy seminorms, fuzzy norms

A fuzzy seminorm, on a vector space E over K, K = R or C, is a map N : E → D(R+) such that :

1. (FN1) : N(0) = 0̃.

2. (FN2) : N(x+ y) � N(x)⊕N(y).

3. (FN3) : N(cx)(t) = N(x)(t|c|−1) for each non-zero scalar c.

We will denote N(x)(t) by N(x, t).

Lemma 3.1 Let N be a fuzzy seminorm on E, t > 0 and ) < α < 1. Then then set

Wt,α = {x : N(x, t) > α}

is absolutely convex and absorbing. Moreover Wt,α = tW1,α.

Proof Clearly Wt,α = tW1,α. So it suffices to prove that W = W1,α is absolutely convex and absorbing. If x ∈ W
and |c| ≤ 1, then cx = 0 ∈ W , if c = 0, while for c 6= 0, we have N(cx, 1) = N(|c|1) ≥ N(x, 1) > α which implies
that cx ∈W . Also W is convex. Indeed, let x, y ∈W , 0 < t < 1, z = tx+ (1− t)y. Then

N(z, 1) ≥ N(tx, t) ∧N((1− t)y, 1− t) = N(x, 1) ∧N(y, 1) > α

and so z ∈ W. Finally, given x ∈ E, there exists s > 0 such that N(x, s) > α and so x ∈ sW , which completes the
proof.
We get easily the following

Lemma 3.2 Let ti > 0, 0 < αi < 1, i = 1, 2, t = min{t1, t2}, α = max{α1, α2}. Then Wt,α ⊂Wt1,α1

⋂
Wt2,α2 .

In view of lemmas 2.2 and 2.3, the family of all Wt,α, t > 0, 0 < α < 1, is a base at zero for a locally convex
topology τN on E. We will denote by qα = qα,N the Minkowski functional of the set W1,α, i.e

qα(x) = inf{t > 0 : N(x, t) > α}.

For t > 0, the Minkowski functional of Wt,α coincides with t−1qα. Hence τN is the topology generated by the
seminorms qα, 0 < α < 1.

Lemma 3.3 For 0 < α < 1, we have qα = infβ>α qβ.

Proof . It is clear that qα ≤ qβ when α < β. On the other hand, let qα(x) < t < 1. There exists 0 < s < t such
that x ∈ sW1,α, i.e. N(x, s) > α. If N(x, s) > β > α, then qβ(x) ≤ s < t. The lemma clearly follows.

If 0 < α1 < . . . < αn ↑ 1, then, for each 0 < α < 1, there exists an n with α < αn and so qα ≤ qαn . Hence τN
is generated by a countable family of seminorms and therefore it is pseudometrizable.

Lemma 3.4 τN is metrizable iff N is a fuzzy norm.

Proof . Suppose that τN is metrizable and hence Hausdorff. Given a non-zero element x of E, there exists t > 0
and 0 < α < 1 such that x /∈ Wt,α, i.e N(x, t) ≤ α which implies that N(x) 6= 0̃ and so N is fuzzy norm. The
converse also follows easily.

Lemma 3.5 Let N be a fuzzy seminorm on E, t > 0, 0 < α < 1. Then:

1. N(x, t) > α⇔ qα(t) < t.

2. N(x, t) = sup{β : qβ(x) < t}.

3. N(x, t+) ≥ α⇔ supβ<α qβ(x) ≤ t.

4. {x : N(x, t) ≥ α} =
⋂

0<β<α{x : qβ(x) < t}.

5. If qα(x) = t, then N(x, t) = α iff qβ(x) < t for each 0 < β < α.

6. If N(x, t) = α, then qα(x) = t iff N(x, s) > α for all s > t.
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Proof . (1) If qα(x) < t, then qα(t−1x) < 1 and so t−1x ∈W1,α, i.e. N(x, t) = N(t−1x), 1) > α. Conversely assume
that N(x, t) > α. Choose < s < t with N(x, s) > α. Then qα(x) ≤ s < t.
(2) It follows easily from (1).
(3)Suppose that N(x, t+) ≥ α and let β < α. For s > t, we have N(x, s) ≥ α > β and so qβ(x) < s. This, being
true for each s > t, implies that qβ(x) ≤ t, for all 0 < β < α and thus d = supβ<α qβ(x) ≤ t. Conversely, assume
that d ≤ t and let s > t. Then, for β < α, we have qβ(x) < s and therefore N(x, s) > β. Since this holds for each
β > α, we get that N(x, s) ≥ α. It follows that N(x, t+) ≥ α.
(4) and (6) follow from (1) while (5) follows from (1) and (4). For N1, N2 fuzzy seminorms on E, the following are
equivalent.:

1. N1(x) � N2(x) for all x ∈ E.

2. qα,N1
≤ qα,N2

for all 0 < α < 1.

Corollary 3.6 For N a fuzzy seminorm on E, t > 0 and 0 < α < 1, the set Wt,α is open.

Example 3.7 Let E be a non-trivial normed space. For x ∈ E, define N(x) on [0,∞) by

N(x, t) =

{
1 if t > ‖x‖,
0 if t ≤ ‖x‖.

Then N is a fuzzy norm on E and qα,N = ‖ · ‖ for all 0 < α < 1. In this case we have

A = {x : N(x, t) < 1} = {x : ‖x‖ ≥ t}

and so A is not open.

Theorem 3.8 Let {pα : 0 < α < 1} be an increasing family of seminorms on a vector space E over K and, for
x ∈ E, define

N(x) : R+ → [0, 1], N(x, t) = sup{α : pα(x) < t}

(the supremum over the empty family is taken to be zero). Then :

1. N is a fuzzy seminorm and, for 0 < α < β < 1, we have pα ≤ qα,N ≤ pβ.

2. pα = qα,N , for all α, iff pα = infβ>α pβ .

3. τN is the topology generated by the seminorms pα.

4. N is a fuzzy norm iff supα pα(x) > 0 for all x 6= 0.

Proof . It is clear that N(x) is increasing and N(cx, t) = N(x, |c|−1t) when c 6= 0. Let N(x, t) > α > 0, where
t > 0. There exists α < β < 1 such that pβ(x) < t. Let 0 < s < t be such that pβ(x) < s. Then N(x, s) > β > α,
which proves that N(x) is left continuous. Suppose now that N(x, t) ∧N(y, s) > α > 0. There exists β > α such
that pβ(x) < t, pβ(y) < s and so pβ(x+y) ≤ pβ(x)+pβ(y) < t+s, which implies that N(x+y, t+s) ≥ β > α. This
proves that N(x+ y) � N(x)⊕N(y). Finally, limt→∞N(x, t) = 1. In fact, let 0 < α < 1 and s > pα(x). For t ≥ s
we have N(x, t) ≥ α, which proves our claim. So N is a fuzzy seminorm. It is easy to see that N is a fuzzy norm iff
supα pα(x) > 0 for all x 6= 0. Next we show that for 0 < α < β < 1, we have pα ≤ qα,N ≤ qβ . Indeed, if qα,N (x) < t,
then N(x, t) > α. There exists γ > α with pγ(x) < t and so pα(x) ≤ pγ(x) < t. This proves that pα ≤ qα,N . Also,
for s > pβ(x), we have N(x, s) ≥ β > α and hence qα,N (x) < s, which proves that qα,N (x) ≤ pβ(x). Thus

pα ≤ qα,N ≤ inf
β>α

pβ .

(2) follows from (1) and from Lemma 3.4 while (3) follows from (1).

Example 3.9 Let X be a topological space, (E,N) a fuzzy normed space and G = Cb(X,E) the space of all bounded
continuous E-valued functions on X. For f ∈ G, we define

N∞(f) =
∨
x∈X

N(f(x)).

Then N∞ is a fuzzy norm on G for which τN∞ coincides with the topology of uniform convergence.
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Example 3.10 Let (rn)∞n=1 be an increasing sequence of continuous seminorms, on a locally convex space E, such
that supn rn(x) =∞ for each x 6= 0. Take r0 = 0. For 0 < α < 1, there exists a unique positive integer n such that

(n− 1)/n < α < n/(n+ 1).

Take pα = rn−1. Then (pα) is an increasing family of continuous seminorms on E. Consider the fuzzy seminorm
N defined by

N(x, t) = sup{α : pα(x) < t}.

Then τN coincides with the topology generated by the seminorms rn. This topology is clearly Hausdorff and thus N
is a fuzzy norm.

In the above example, for each x ∈ E and each t > 0, we have that either N(x, t) ∈ {0, 1}} or N(x, t) = n/(n+ 1)
for some positive integer n. Indeed, assume that N(x, t) 6= 0, 1. Then x 6= 0. There exists a unique positive integer
n such that rn−1(x) < t ≤ rn(x). Let 0 < α < 1. If (n − 1)/n < α ≤ n/(n + 1), then pα(x) = rn−1(x) < t. If
α > n/(n+ 1) and (m− 1)/m < α < m/(m+ 1), then n ≤ m− 1, which implies that pα(x) = rm−1(x) ≥ rn(x) ≥ t.
It follows that N(x, t) = n/(n+ 1) and so the claim is true. Let

V = {x : N(x, t) ≥ (n+ 1)/(n+ 2)

Using the claim we get that V = {x : N(x, t) > n/(n + 1)} and so V is open. The set V is not empty since it
contains 0. If rn−1 6= 0, then V 6= E. Indeed, assume that V = E. Then, for α = n/(n + 1) and y ∈ E = V ,
we have N(y, t) > α and hence qα(y) < t. This, being true for all y ∈ E, rn−1 = pα ≤ qα = 0, a contradiction.
Therefore, for rn−1 6= 0, we have that V is a non-empty proper subset of E which is open and hence not closed
since every non-trivial topological vector space is connected.

We will say that a topological vector space E is fuzzy normable if there exists a fuzzy norm N on E such that
τN coincides with the topology of E. A Hausdorff topological vector space E is fuzzy normable iff it is locally
convex and metrizable. Proof . We have shown that the condition is necessary. for the necessity, suppose that
E is locally convex and metrizable. Then, there exists an increasing sequence (rn) of continuous seminorms on E
such that, for each continuous seminorm p on E the exists an n with p ≤ rn. As in the preceding example, there
exists a fuzzy norm N on E such that τN coincides with the topology generated by the seminorms rn, n = 1, 2, . . ..
This latter topology is the topology 9f E.

4 Some properties of fuzzy seminormed spaces

Let (E,N) be a fuzzy seminormed space and A ⊂ E. Then :

1. For a net (xδ) in E, we have that limδ N(xδ − x, t) = 1 for all t > 0

2. A is τN -bounded iff N(A) is bounded in D(R+), which is equivalent to

lim
t→∞

inf
x∈A

N(x, t) = 1.

3. An element x of E belongs to the closure A of A iff
∧
y∈AN(x−y) = 0̃, which is equivalent to sup{N(x−y, t) :

y ∈ A} = 1 for all t > 0

4. x belongs to the interior Ao of A iff
∧
y/∈AN(x − y) 6= 0̃, which is equivalent to supy/∈AN(x − y, t) < 1 for

some t > 0.

5. If A is non-empty and proper subset of E, then∧
x∈A,y/∈A

N(x− y) = 0̃,

which is equivalent to
sup{N(x− y, t) : x ∈ A, y /∈ A} = 1

for each t > 0.
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Proof . (1) Suppose that xδ → x and let t > 0. The set Wt,α is a neighborhood of zero in E. Thus, there exists δo
such that xδ − x ∈Wt,α, i.e. N(xδ − x, t) > α, for all δ ≥ δo, which proves that limδ N(xδ − x, t) = 1. The converse
follows analogously.
(2) Assume that A is bounded and let ) < α < 1. There exists t > 0 such that A ⊂ tW1,α. Thus, for x ∈ A, we
have N(x, t) > α, which clearly proves that limt→∞ infx∈AN(x, t) = 1. The proof of the converse is analogous.
(3) Suppose that x ∈ A and let t > 0. Given 0 < α < 1, there exists y ∈ A such that x − y ∈ Wt,α, i.e.
N(x− y, t) > α. Hence supy∈AN(x− y, t) = 1. The converse follows in an analogous way.

(4) Assume that x ∈ Ao. Since Ao is the complement of the closure Ac of Ac = E \ A, we have that x /∈ Ac. In
view of (3), there exists t > 0 such that

sup
y/∈A

N(x− y, t) < 1.

The converse again follows from (3).
(5) Assume that A 6= ∅, E. If ∂A is the boundary of A, then A = Ao∪∂A. Now ∂A cannot be empty. Indeed, if ∂A
were empty, then A = A = Ao and so A would be both open and closed which cannot be true since E is connected.
Let now z ∈ ∂A = A ∩ Ac. Since z ∈ A, there exists by (3) an x ∈ A such that N(x− z, t/2) > α. Similarly, since
z belongs to the closure of Ac, there exists y /∈ A such that N(z − y, t/2) > α. Now

N(x− y, t) ≥ N(x− z, t/2) ∧N(z − y, t/2) > α,

which completes the proof.

Theorem 4.1 For a non-empty subset A of a seminormed space (E,N), the following are equivalent :

1. A is totally bounded.

2. Given t > 0, there exist x1, · · · , xn in A such that

infx∈A max
1≤k≤n

N(x− xk, t) ≥ α.

3. Given t > 0, there exist x1, · · · , xn in E such that

infx∈A max
1≤k≤n

N(x− xk, t) ≥ α.

Proof . (1)⇒ (2) Suppose that A is totally bounded and let t > 0, 0 < α < 1. The set Wt,α is a neighborhood of zero
and hence there exists a finite subset S = {x1, · · · , xn} in A such that A ⊂ S+Wt,α. If now x ∈ A, then x−xk ∈Wt,α,
for some 1 ≤ k ≤ n, and hence N(x− xk, t) > α. This proves that infx∈A max1≤k≤nN(x− xk, t) > α.
(3) ⇒ (1) Let t > 0 and 0 < α < 1. Let 0 < α < β < 1. By (3), there are x1 · · · , x − n in E such that
max1≤k≤nN(x− xk, t) ≥ β for all x ∈ A. Hence, given x ∈ A, there exists k such that

x− xk ∈ V = {y : N(y, t) ≥ β} ⊂Wt,α.

Thus A ⊂ {x1, · · · , xn}+Wt,α, which completes the proof.

Theorem 4.2 For a fuzzy normed space (E,N), the following are equivalent

1. There exists 0 < α < 1 such that limt→∞ inf{N(x, t) : N(x, t) > α} = 1

2. There exists 0 < α < 1 such that τN is generated by the seminorm qα,N (in this case qα,N is a norm).

Corollary 4.3 If (E,N) is finite dimensional fuzzy normed space, then there exists 0 < α < 1 such that

lim
t→∞
{N(x, t) : N(x, t) > α} = 1.

Proof The topology τN is Hausdorff. But every finite dimensional Hausdorff topological vector space is normable.
Hence the result follows from the preceding theorem.

Lemma 4.4 Let f be a linear functional on a fuzzy seminormed space (E,N). For t > 0 and 0 < α1, the following
are equivalent :

1. If x ∈ E and qα(x) < 1, then |f(x)| < 1.
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2. N(x, t|f(x)) ≤ α for all x ∈ E.

Proof . (1)⇒ (2). Clearly N(x, t|f(x)) ≤ α if f(x) = 0. Suppose that f(x) 6= 0 and let y = f(y). Then |f(y)| = 1.
By our hypothesis (1) we have that qα(y) ≥ t, i.e. qα(x) ≥ t|f(x)|, which proves that N(x, t|f(x)) ≤ α (by lemma
2.6))
(2)⇒ (1). If qα(x) < t, then N(x, t) > α, which (by our hypothesis (2)) implies that t|f(x)|, t, i.e. |f(x)| < 1, and
the lemma follows.

Theorem 4.5 A linear functional f on a fuzzy seminormed space (E,N) is continuous iff there exists t > 0 such
that

sup{N(x, t|f(x)|)x ∈ E} < 1.

Hence f is continuous iff there are t > 0 and 0 < α < 1 such that N(x, t|f(x)|) ≤ α for all x ∈ E

Proof . Suppose That f is continuous. Then, there exist 0 < α < 1 and 0 < t |f(x)| < 1 when qα(x) < t. Then

sup{N(x, t|f(x)|)x ∈ E} < 1.

Conversely, let t > 0 be such that

sup
x∈E

N(x, t|f(x)|) < α < 1.

By the preceding lemma, |f(x)| < 1 when qα(x) < t and so f is continuous. The result now clearly follows.
With an analogous proof we prove the following

Theorem 4.6 Let (E,N) be a fuzzy seminormed space and F be a locally convex space. Then a linear T : (E,N)→
f is continuous iff, for each continuous seminorm p on F there exists t > 0 there exists 0 < α < 1 such that
N(x, tp(Tx)) ≤ α for all x ∈ E.

We also have the following

Theorem 4.7 Let (E,N) be a fuzzy seminormed space and let H be a subset of the dual space of E. Then H is
equicontinuous iff there exists t > 0 such that

sup{N(x, t|fx|) : x ∈ E.f ∈ H} < 1.

Theorem 4.8 Let N1, N2, · · · , Nn be fuzzy seminorms on a vector space E. For x ∈ E) define N(x) = ⊕nk=1Nk(x).
Then N is a fuzzy seminorm and qα,N =

∑n
k=1 qα,Nk .

Proof . It easy to show that N is a fuzzy seminorm. Suppose that qα,N (x) > t. Then N(x, t) > α. There are
tk > 0,

∑n
k=1 tk = t, such that min1≤k≤nNk(x, tk) > α.Then qα,Nk(x) < tk and

∑n
k=1 qα,Nk(x) < t. This proves

that qα,N =≥
∑n
k=1 qα,Nk = d. On the other hand let d < s. There are sk > 0 such that qα,sk(x) < sk,

∑n
k=1 sks.

Then Nk(xk) > α N(x, t) ≥ ∧nk=1Nk(x, sk) > α, which implies that qα,N (x) < d. This proves that qα,N (x) ≤ d and
the result follows.

Theorem 4.9 (Hahn Banach) Let F be a subspace of a fuzzy norm space (E,N) and let f be a linear functional on
F such that, for so t > 0 and some 0 < α < 1 we have N(x, t|f(x)|) ≤ α for all x ∈ F . Then there exists a linear
extension g of f such that N(x, t|g(x)|) ≤ α for all x ∈ E.

Proof . By lemma 3.5 our hypopthesis is equivalent to |f(x)| < 1 when qα(x) < 1. Set

‖f‖α = sup{|f(x)| : x ∈ F, qα(x) ≤ 1} = sup{|f(x)| : qα(x) < 1} ≤ t−1.

Thus |g(x)| ≤ t−1qα(x) for all x ∈ F . By the Hahn Banach Theorem there exists a linear extension g of f such
that |g(x)| ≤ t−1qα(x) for all x ∈ E. If now x ∈ E and qα(x) < t, then |g(x)| < 1. In view of lemma 3.5 we get
N(x, t|g(x)|) ≤ α for all x ∈ E.

Next we give a fixed point theorem analogous to the one that holds for metric spaces. We will need the following

Lemma 4.10 If ξ ∈ D(R+) is such that ξcξ for some 0 < c < 1, then ξ = 0̃. Also (c1ξ)⊕ (c2ξ)(c1 + c2)ξ.
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Proof . By induction we have that ξcnξ for each positive integer n. For t > 0 ξ(t) ≥ lim ξ(c−nt) = 1. Thus ξ(t) = 1
for all t > 0 and hence ξ = 0̃. Let s > 0 , s = s1 + s2 and c = c1 + c2. We cannot have that s1/c1, s2/c2 > s/c.
Thus

(cξ)(s) ≥ ξ(s1/c1) ∧ ξ(s2/c2) = (c1ξ)(s1) ∧ (c2ξ)(s2).

Thus c1ξ ⊕ c2ξcξ

Definition 4.11 A fuzzy Banach space is a fuzzy normed space (E,N) for which (E, τN )is complete.

Theorem 4.12 (A fixed point theorem) Let (E,N) be a fuzzy Banach space and let f : E → E be a function for
which there exists 0 < c < 1 such that N(f(x) − f(y))cN(x − y)) for all x, y ∈ E. Then f has a unique fixed x1.
Moreover if x1 is any element of E and xn+1 = xn, then (xn) converges to x1.

Proof .The proof is analogous to the one for complete metric spaces. First observe that f is uniformly continuous.
Indeed, given t > 0 and 0 < α < 1, take s = c−1t. If x− y ∈Ws,α, then

N(f(x)− f(y), t) ≥ N(x− y, s) > α

which proves that f is uniformly continuous. Now by induction we get that

N(xn+1 − xn)N(x2 − x1) = cn−1ξ.

For m > n, we have

N(xm − xn)⊕m−1
k=n N(xk+1 − xk)⊕m−1

k=n ck−1ξ)(cn−1 + · · · cm)ξcn−1/(1− c)ξ.

It follows that (xn) is Cauchy and thus xn xo for some xo. Since f is continuous, we have that f(xn)→ f(xo). But
f(xn) → xo. Hence f(xo) = xo, i.e. xo is a fixed point. Finally, suppose that x, y are fixed points for f and let
η = N(x − y). Then ηN(f(x) − f(y))cN(x − y)) = cξ and hence η = 0̃, by the preceding lemma. It follows that
x− y = 0 since N is a fuzzy norm which competes the proof.

Theorem 4.13 For a sequence (xn), in a fuzzy seminormed space (E,N), the following are equivalnet:

1. ξ = ∧n ⊕nk=1 N(xk) exists in D(R+).

2. For each 0 < α < 1 we have that
∑∞
n=1 qα(xn) <∞.

Proof . (1) ⇒ (2). Let 0 < α < 1. There exists t > 0 such that ξ(t) > α. There exists 0 < s < t such that
ηn(s) > α, for all n, where ηn = ⊕nk=1N(xk) Given n, there exist sk such that

∑n
1 sk = s and N(xk, sk) > α.

Hence qα(xk) < sk and so
∑n

1 qα(xk) < s < t. This proves that
∑∞
n=1 qα(xn) ≤ t.

(2)⇒ (1). It suffices show that , for ηn = ⊕nk=1N(xk), we have that

lim
t→∞

inf
n
ηn(t) = 1.

So, let 0 < α < 1. By our hypothesis (2), there exists s such that

∞∑
1

qα(xk) < s <∞.

For a given n, there exist s1, · · · , sn such that qα(xk) < sk and
∑n

1 sk < s. Now N(xk, sk) > α and hence

ηn(s) ≥
n∧
k=1

N(xk, sk) > α.

Thus infn ηn(s) ≥ α which proves that limt→∞ ηn(t) = 1. This completes the proof.

Theorem 4.14 For a sequence (xn), in a fuzzy seminormed space (E,N), the following are equivalent :

1. The supn
∧⊕n

k=1N(xk) exists in D(R+).

2. For each 0 < α < 1 we have that
∑∞
n=1 qα(xn) <∞.
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Proof. (1)→ (2). Let ξ =
∧
n

⊕
N(xk and 0α < 1. There exists t such that infn [

⊕n
k=1N(xk)] > α. Given n, there

are t1, · · · , tn such that
∑n

1 tk = t and N(xk, tk) > α for all n. Now qα(xk) < tk and so
∑n

1 qα(xk) ≤ t. This proves
that

∑∞
1 qα(xk) ≤ t.

(2)⇒ (1). Assume that supn
∧⊕n

k=1N(xk). There exists 0 < α < 1 such that

sup
t

[inf
n
⊕n1N(xk)](t) < α.

Choose t >
∑∞

1 qα(xn). There exists a sequence (tn) such that
∑
tn < t and qα(xn) < tn for all n. Now, for each

n, [
n⊕
k=1

N(xk)

]
(t) ≥

n∧
k=1

N(xk, tk) > α.

This roves that

sup
t>0

inf
n

[
n⊕
1

N(xk

]
(t) = 1

and so
∧
n

⊕n
k=1N(xk exists.

Lemma 4.15 For a metrizable locally convex space E the following are equivalent:

1. If (xn) is a sequence in E such that
∑∞
n=1 p(xn) <∞ for every continuous seminorm p on E, then the series∑∞

n=1 xn is convergent.

2. E is complete.

Proof . (2) ⇒ (1). Suppose that the condition for a sequence (xn) in E. L:et yn =
∑n
k=1 xk. For p ∈ cs(E) and

m > n, we have that p(ym − yn) ≤
∑m
n+1 p(xk)→ 0 when n→∞. Thus (yn) is is Cauchy and hence convergent.

(1) ⇒ (2). Since E is metrizable, there exists an increasing sequence (pn) of continuous seminorms on E such
that, for each p ∈ cs(E), the exists an n such that p ≤ pn. Let (xn) be a Cauchy sequence E. Choose an indices
n1 < n2 < · · · such that pk(xn− xm) < 1/2k for all n,m > nk. Consider the series Given p ∈ cs(E), choose ko such
that p ≤ ko. Then

∞∑
k=1

p(yk =

ko∑
k=1

p(yk) +
∑
k>ko

p(yk).

But for k > ko, we have p(yk) ≤ pk(yk) < 1/2k. Thus

∑
p(yk) ≤

ko∑
k=1

p(yk) +
∑
k>ko

2−k <∞.

Now by our hypothesis the series
∑
yn converges in E. For each m we have zm =

∑m
k= yk = xnm . So (zm) is a

convergent subsequence of (xn). Since (xn) is Cauchy, it follows that it converges and the proof is complete.

Theorem 4.16 For a fuzzy normed space (E,N), the followig are equivalent:

1. (E,N) is complete.

2. For every sequence (xn) in E, for which the element ξ =
∨
n

⊕n
k=1N(xk) exists in D(R+), the series

∑
xn

converges in E.

Proof. For each τN continuous seminorm there exists 0 < α < 1 and c > 0 such that p ≤ cpα. Now result follows
from the preceding lemma and the theorem 3.15 .

5 Subspaces, product and quotient spaces

let F be a subspace of a fuzzy seminormm space. Define NF to be the restriction of N to F . Then NF is a fuzzy
seminorn on F . Meoreover, For 0 < α < 1 and x ∈ F , we have

qα,NF (x) inf{t : t > 0, NF (x, t) > α} = inf{t : N(x, t) > α} = qα,N (x).

Hence the topology induced on F by the seminorm NF coincides with the topology of F as a subspace of (E, τN ).
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Definition 5.1 A fuzzy seminorm N, on a topological vector space E, is said to be continuous if the induced topology
τN is coarser than the topology of E.

It is well known that, if F is subspace of E, then each continuous seminorm on F has a continuous extension
on all f E. In the next theorem we will show that the same happens for fuzzy continuous seminorms.

Theorem 5.2 Let F be a subspace of a locally convex space E and let N be a continuous fuzzy fuzzy seminorm on
F . Then :

1. There exists a continuous fuzzy seminorm N ′ on E such that N = N ′ on F .

2. For each 0 < α < 1 we have that qα,N (x) = qα,N ′(x) for x ∈ F .

3. If F is dense, then N ′ is unique.

Proof . Let αo = 0 < α1 < · · · < αn ↑ 1. For 0 < α < 1, let qα = qα,N . Let po be the zero seminorm on E. For n
a positive integer, there exists a continuous seminorm rn on E such that rn = qαn on F . Let pn = r1 ∨ · · · ∨ rn.
Then pn is a continuous seminorm on E. For x ∈ F , we have

pn(x) = max
1≤k≤1

rk(x) = max
1≤k≤n

qαk(x) = qαnx).

Also pn ≤ pm if n ≤ m. For 0 < α < 1, there exists a unique m such that αm−1 < α ≤ αm. Define

σα(x) = inf{qα(y) + pm(x− y) : y ∈ F}

for x ∈ E. Then σα is a seminorm on E. Indeed, σα(0) ≤ qα(0) + pm(0) = 0. For c 6= 0, we have
σα(x) = inf{qα(y) + pm(cx− y) : y ∈ F} = inf{qα(cy) + pm(cx− cy) : y ∈ F}
= |c| inf{qα(y) + pm(x− y) : y ∈ F} = |c|σα(x).
To prove that the triangle inequality, let t1 > σα(x), t2 > σα(z). There are y1, y2 in F such that qα(y1) + pm ∈ F
and so

σα(x+ z) ≤ qα(y) + pm(x+ z − y) ≤ qα(y1) + qα(y2) + pm(x− y1) + pm(z − y2) < t1 + t2.

This shows that σα(x+ z) ≤ σα(x) + σα(z) and therefore σα is a seminorm on E. Moreover σα(x) ≤ qα(0) + pm(x)
and hence σ is continuous. For y ∈ F , we have

qα(x) ≤ qα(y) + qα(x− y) ≤ qα(y) + qαm(x− y) = qα(y) + pm(x− y).

Thus qα(x) ≤ σα(x). On the other hand, σα(x) ≤ qα(x) + pm(o) = qα(x) and hence σα(x) = qα(x). For α ≤ β, we
have that σα ≤ σβ . Indeed, let αm−1 < α ≤ αm, αn−1 < β ≤ αn. Then αm−1 < α ≤ β ≤ αn and so m − 1 < n,
which implies that m ≤ n and therefore σα ≤ σβ . Now define, for ∈ E, N ′(x, t) = sup{α : σα(x) < t}. Then N ′ is
a fuzzy seminorm on E. For 0 < α < 1, we have

σα(x) ≤ qα,N ′(x) ≤ σβ(x).

Thus qα,N ′ is continuous on E and hence N ′ is continuous. Moreover N(x) = N ′(x) for x ∈ F . Indeed, for x ∈ F ,
we have

N ′(x, t) = sup{α : σα(x) < t} = sup{α : qα(x) < t} = N(x, t).

Thus N = N ′ on f . As we have seen in the beginning of the section we have that qα,N)=qα,N ′ on F . Finally,
suppose that F is dense and let N1, N2 be continuous extensions of N . Since qα,N1

, qα,N2
are ontinuous on E we

have that qα,N1
= qα,N2

which proves that N1 = N2. This complets the proof.

Theorem 5.3 Let E,F be linear spaces and let T : E → F be a linear map. Let N be a fuzzy seminorm on F .
Define

N ′ = T−1(N) : E → D(R+), N ′(x) = N(Tx).

Then N ′ is a fuzzy seminorm on E and qα,N ′ = T−1(qα,N ).

Proof . It is easy to see that N ′ is a fuzzy seninorm.Moreover, for x ∈ E,

qα,N ′(x) = inf{t : N ′(x, t) > α} = inf}{t : N(Tx, t) > α} = qα.N (Tx).
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Corollary 5.4 If E is a topological vector space, T : E → F a linear map and N a fuzzy seminorm on F , then
T :→ (F, τN ) is continuous iff T−1(N) is a continuous seminorm on E.

Theorem 5.5 Let (E,N) a fuzzy seminorm space and F a subspace Define

No : E/F → D(R+), No(x+ F ) +
∧
y∈F

N(x+ y)/.

Then

1. No is a a fuzzy seminorm on E/F .

2. For 0 < α < 1, we have qα,No(x+ F ) + infy∈F qα,N (x+ y).

3. No is a fuzzy norm iff F is τN -closed in E.

Proof . (1). For t > 0, we have No(x+ F, t) = supy∈F qα,N (x+ y). It is easy to see that, for c 6= 0, we have

No(x+ F, t) = No(x+ F, t/|c|).

If
No(x+ F, t1) ∧No(y + F, t2) > α > 0,

there exist y1, y2 ∈ F such that N(x+ y1, t1) ∧N(y + y2, t2) > α and so

No(x+ y + F, t1 + t2) ≥ N(x+ y + y1 + y2, t1 + t2) ≥ N(x+ y1, t1) ∧N(y + y2, t2) > α,

which proves that No(x+ y + F )No(x+ F )⊕No(y + F ). So No is a fuzzy seminorm. Next we show that

qα,No(x+ F ) = inf
y∈F

qα,N (x+ y).

Indeed, if qα,No(x+ F ) < t, then No(x+ F, t) > α and hence N(x+ y, t) > α, for some y ∈ F , which implies that
qα,N (x+ y) < t. This proves tha

d = inf
y∈F

qα,N (x+ y) ≤ qα,No(x+ F ).

On the other hand, let t > d. There exists y ∈ F with qα,N (x+ y) < t and so N(x+ y, t) > α. Therefore

No(x+ F ) ≥ N(x+ y, t) > α

which implies that qα,No(x + F ) < t. This proves that qα,No(x + F ) ≤ d. Finally, if F is closed and x ∈ F = F ,
then(by theorem 3.1) there exists t > 0 such that

No(x+ F ) = sup{N(x− y, t) : y ∈ F} > 0,

which implies No(x+ F ) 6= 0̃ and so No is a fuzzy norm. Conversely assume that No is a fuzzy norm. Then, given
x /∈ F there exists 0 < α < 1 such that qα,No(x+ F ) > t > 0. Now

sup
y∈F

N(x− y, t) = No(x+ F, t) ≤ α < 1

and hence x /∈ F , which proves that F is closed. This completes the proof.

Theorem 5.6 Let (Ek, Nk), k = 1, · · · , n, be a finite family of fuzzy seminormed spaces and let E =
∏n
k=1Ek. For

x = (u1, · · · , un) in E, we define
N(x) = ⊕nk=1Nk(uk).

Then:

1. N is a fuzzy seminorm on E.

2. qα,N (x) =
∑n
k=1 qα,Nk(uk).

3. tN is the product topology.
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4. N is a fuzzy norm iff each Nk is a fuzzy norm.

Proof . Using an argument analogous to the one used in theorem 3.9, we get that N is a fuzzy seminorm and that
qα,N (x) =

∑n
k=1 qα,Nk(uk). Assume that each Nk is a norm. If x = (u1, · · · , un) is not the zero element, then

uk 6= 0 for some k. Since Nk is a norm, qα,Nk(uk) 6= 0, for some 0 < α < 1, and so qα,N (x) 6= 0, which proves that
N is a fuzzy norm. On the other hand, suppose that some Nj is not a fuzzy norm. There exists u 6= 0 such that
Nj(u) = 0̃. Let x = (u1, · · · , un) with uk = 0, for k 6= j, and uj = u. Then N(x) = 0̃ and hence N is not a fuzzy
norm. Since τN is clearly the product topology, the result follows.

Theorem 5.7 Let (En, Nn) be a sequence of fuzzy seminorm spaces and let E =
∏∞
n=1En. For 0 < α < 1. define

rα,n(x) =
∑n
k=1 qα,Nk(uk) for x = (uk) ∈ E. Let αn = n/(n + 1). For 1/(n + 1) ≤ 1 − α < 1/n, take pα = rαn,n.

Then {pα : 0 < α < 1} is an increasing family of fuzzy seminorms on E. If

N(x, t)= sup{α : pα(x) < t}

(the supremum over the empty family is taken to be zero), then :

1. N is a fuzzy seminorm on E.

2. N(x, t) = sup{n/(n+ 1) : rαn,n(x) < t} = sup{n/(n+ 1) : [
⊕n

k=1Nk(k)] (t) > n/(n+ 1)}.

3. τN coincides with the product topology.

4. N is a fuzzy norm iff each Nk is a fuzzy norm.

Proof . It is clear is a seminorm on E. If 0 < α < β < 1, (n−1)/n < α ≤ n/(n+1) and (m−1)/m < β ≤ m/(m+1),
then n ≤ m and hence αn ≤ αm, which implies that

pα = rαn,n ≤ rαm,m = pβ .

It follows that N is a fuzzy seminorm on E. Since for each 0 < α < 1 we have hat pα = rαn,n for some n, it follows
that

N(x, t) = sup{n/(n+ 1) : rαn,n < t}.

Claim. rαn,n(x)⇔ [
⊕n

k=1Nk(uk)] (t) > n/(n+ 1).
Indeed, suppose that rαn,n(x)<t. Then there are tk, qαn,n(uk) < tk and

∑n
k=1 tk < t. Hence Nk(uk) > αn, for

k = 1, · · · , n, and so [
n⊕
k=1

Nk(uk)

]
(t) ≥

∧
Nk(uk, tk) > αn.

Conversely, assume that [⊕nk=1Nk(uk)](t) > αn. There are tk,
∑n
k=1 tk = t, Nk(uk, tk) > αn. Thus qαn,Nk(uk) < tk

and therefore rαn,n(x) <
∑n
k=1 tk = t. Hence (2) follows.

(3). Let (xδ)δ∈∆ be a net in E, xδ = (uδk). If xδ → 0 in the product topology, then uδk → 0 for each k, and so

rαn,n(xδ) =

n∑
k=1

qαn,Nk(uδk)→ 0,

which proves that xδ → 0 in the topology τN . Conversely, suppose that xδ → 0 in the topology τN and let 0 < α < 1
and k be given. Choose n > k such that n/(n+ 1) > α. Now

qα,Nk(uδk) ≤ qαn,Nk(uδk) ≤ rαn,n(xδ)→ 0.

This clearly proves that xδ → 0 in the product topology.
(4) It follows from the fact that a fuzzy seminorm is a fuzzy norm iff the corresponding topology is Hausdorff
together with the well known property that the cartesian product of non-empty topological spaces is Hausdorff iff
each factor is Hausdorff.
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6 Tensor products of fuzzy norms

Let N1, N2 be fuzzy seminorms on the vector spaces E,F , respectively. Define N = N1⊗N2 on the tensor product
E ⊗ F by

N(u) = ∧{⊕nk=1N1(xk)⊗N2(yk) : u =

n∑
k=1

xk ⊗ yk}

where the infimum is taken over the family of all possible representations u =
∑n
k=1 xk ⊗ yk of u ∈ E ⊗ F . We

claim that N is a fuzzy seminorm on g = E ⊗ F .
(FN1) If u = 0 = 0⊗ 0, then N(u) � N1(0)�N2(0) = 0̃ and so N(u) = 0̃.
(FN3) Let c 6= 0. Then [N1(x)�N2(y)] (t) = sups>0N2(y, s) ∧N1(ts−1) =
sups>0N2(y, s) ∧N1(c−1x, |c|−1t/s) = [N1(c−1x)�N2(y)](|c|−1t). Now

N(cu, t) = sup{[⊕nk=1N1(xk)�N2(yk)](t) : u =

n∑
k=1

xk ⊕ yk}.

For cu =
∑n
k=1 xk ⊕ yk and zk = c−1xk, we have u =

∑n
k=1 zk ⊕ yk. Thus

[⊕nk=1N1(xk)�N2(yk](t) = sup{∧N1(xk)�N2(yk)](tk) : t =
∑n
k=1 tk}

= sup{∧[N1(zk)�N2(yk)](|c|−1tk). Therefore
N(cu, t) = sup{[⊕nk=1N1(zk)�N2(yk)](|c|−1t) : u =

∑
zk ⊕ yk}

= N(u, |c|−1t).
(FN2) We have that N(u+v, t+s) � N(u, t)∧N(y, s). In fact, let N(u, t)∧N(y, s) > α. There are representations
u =

∑n
k=1 xk ⊕ yk and v =

∑m
k=n+1 xk ⊕ yk such that ξ(t) ∧ η(s) > α, where ξ = ⊕nk=1N1(xk) � N2(yk), η =∑n

k=n+1N1(xk) � N2(yk). Now ξ ⊕ η =
∑m
k=1N1(xk) � N2(yk) and ξ ⊕ η ≥ (ξ ⊕ η)(t + s) > α. This proves that

N(u+ v) � N(u)⊕N(v) and claim follows.

Theorem 6.1 For 0 < α < 1 we have that qα,N (u) = qα,N1
⊕ qα,N2

.

Proof . Suppose that qα,N (u) < t. Then N(u, t) > α. There exists a representation u =
∑n
k+1 xk ⊕ yk such that

[⊕nk=1N1(xk)�N2(yk)] (t) > α.

Now there are tk,
∑n
k=1 tk = t such that

n∧
k=1

[N1(xk)�N2(yk)](t) > α.

For each k, there exists sk with N1(xk, sk)
∧
N2(yk), tk/sk) > α. Now

qα,N1
(xk) < sk, qα,N2

(yk) < tk/sk

and therefore qα,N1
(xk)qα,N2

(yk) < tk, which implies that

qα,N1
⊕ qα,N2

(u) ≤
n∑
k=1

qα,N1
(xk)qα,N2

(yk) <

n∑
k=1

tk = t.

Conversely, suppose qα,N1 ⊕ qα,N2(u) < t. There exists a representation
u =

∑n
k=1 xk ⊕ yk such that

n∑
k=1

qα,N1
(xk)qα,N2

(yk) < t.

Now, there is ε > 0 such that, for tk = ε+ qα,N1(xk), sk = ε+ qα,N2(yk), we
∑n
k=1 tksk < t. Then N1(xk, tk) > α ,

N2(yk, sk) > α, and so
[⊕nk=1N1(xk)�N2(yk)](t) ≥ [⊕nk=1N1(xk)�N2(yk)(

∑n
k=1 tksk)

≥
∧n
k=1[N1(xk)�N2(yk)](tksk) ≥

∧n
k=1N1(xk, tk)N2(yk, sk) > α. The result clearly follows.

Corollary 6.2 For all x ∈ E, y ∈ F we have

qα,N (x⊗ y) = qα,N1 ⊗ qα,N2(x⊗ y) = qα,N1(x)qα,N2(y).
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In view the theorem., τN coincides with the projective tensor product topology.

Theorem 6.3 N(x⊗ y) = N1(x)�N2(y).

Proof . By the definition of N , we have that N(x ⊗ y) � N1(x) ⊗ N2(y). On the other hand, suppose that
N(x ⊗ y, t) > α. Then qα,N (x ⊗ y) = qα,N1

(x)qα,N2
(y) < t. There are t1 > qα,N1

(x), t2 > qα,N2
(y) such that

t1t2 < t. Then N1(x, t1) > α and N2(y, t2) > α, and so N1(x)�N2(y)(t) > α. This clearly completes the proof.

Theorem 6.4 N1 ⊕N2 = N is the biggest of all fuzzy seminorms N ′ such that N ′(x× y) � N1(x)�N2(y) for all
x ∈ E, y ∈ F .

Proof . Suppose that N ′(x⊗ y) � N ′(x)�N ′(y) for all (x, y). If u =
∑n
k=1 xk ⊗ yk, then

N ′(u) �
n⊕
k=

N ′(xk ⊗ yk) �
n⊕
k=1

N1(xk)�N2(yk).

It follows from this that N ′(u) � N(u) for all u, as it was to be proved.
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