The status quo of rural and renewable energy development in Liberia: policy and implementation

  • Authors

    • Adebayo A. Fashina Tubman University
    • Oluwole O. Akiyode Kampala International University
    • Dahiru M. Sanni Federal University, Dutsin-ma
    2018-07-25
    https://doi.org/10.14419/e.v1i1.14518
  • RE, RETs, Biomass, Solar, Hydropower, Wind, Rural and RE Policy, Liberia.
  • Energy is the key for development and is indispensable for human and its society’s sustenance. Likewise, without electricity and access to modern information technologies it would be quite difficult to provide quality education and health care. For the least developing countries with rural populations such as Liberia, a working financing mechanism for renewable energy (RE) applications is of extreme importance. This is because Liberia has failed to implement a sound rural and RE development policy due to uncertainty regarding the financial costs as with many least developing countries. It is therefore, crucial that the use of the available RE resources should be intensified to meet the energy needs of the country, particularly, in the rural and remote areas. This paper examined and discussed the current and potential of RE exploitation and development in Liberia from the viewpoint of sustainable development. The status of the various RE sources and their applications including details of the few existing RE projects in the country are carefully explored and discussed before elucidating the major barriers and challenges faced by the energy sector as regards the implementation of Liberia’s rural and RE policy. Measures and policies that are required to facilitate the deployment of RE in Liberia are proposed while the existing government policies are assessed. These evidence-based policies could guide the future design, delivery and development of affordable and sustainable energy solutions in Liberia.

     

     

  • References

    1. [1] Dincer, I. Renewable energy and sustainable development: a crucial review. Renew. Sustain. Ener.2000 4(2), 157-175.

      [2] Omer, A.M. Energy, environment and sustainable development. Renew. Sustain. Ener. 2008 12(9), 2265-2300.

      [3] Kanagawa, M.; Nakata, T. Analysis of the energy access improvement and its socio-economic impacts in rural areas of developing countries. Ecological Economics, 2007 62(2), 319-329. https://doi.org/10.1016/j.ecolecon.2006.06.005.

      [4] Kanagawa, M.; Nakata, T. Assessment of access to electricity and the socio-economic impacts in rural areas of developing countries. Energy Policy, 2008 36(6), 2016-2029. https://doi.org/10.1016/j.enpol.2008.01.041.

      [5] BP: Statistical Review of World Energy Workbook (xlsx), London, June 2017 Available on https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf (accessed on 12 March 2016)

      [6] Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 414, 2001 6861 332.

      [7] Dincer, I. Renewable energy and sustainable development: a crucial review. Renewable and sustainable energy reviews, 2000 4(2), 157-175. https://doi.org/10.1016/S1364-0321(99)00011-8.

      [8] Omer, A. M. Energy, environment and sustainable development. Renewable and sustainable energy reviews, 2008 12(9), 2265-2300. https://doi.org/10.1016/j.rser.2007.05.001.

      [9] Armaroli, N.; Balzani, V. The future of energy supply: challenges and opportunities. Angewandte Chemie International Edition, 2007 46(1â€2), 52-66.

      [10] Jaccard, M. (2006). Sustainable fossil fuels: the unusual suspect in the quest for clean and enduring energy. Cambridge University Press. https://doi.org/10.1017/CBO9780511754104.

      [11] World Bank. Sustainable Energy for All (SE4ALL) Database; from the SE4ALL Global Tracking Framework Led Jointly by the World Bank, International Energy Agency and the Energy Sector Management Assistance Program; World Bank: Washington, DC, USA, 2017.

      [12] Twidell, J.; Weir, T. (2015). Renewable energy resources. Routledge.

      [13] Sorenson, B. (1979) Renewable Energy, 1st ed London: Academic Press

      [14] World Development Indicator Data. The World Bank IBRD-IDA (2016). Forest area (percentageof land area). Food and Agriculture Organization, electronic files. Available online: http://data.worldbank.org/indicator/AG.LND.FRST.ZS (accessed on June 17, 2018).

      [15] IPCC, 2011: Summary for Policymakers. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

      [16] Mirza, U. K.; Ahmad, N.; Majeed, T. An overview of biomass energy utilization in Pakistan. Renewable and Sustainable Energy Reviews, 2008 12(7), 1988-1996. https://doi.org/10.1016/j.rser.2007.04.001.

      [17] Rosillo-Calle, F. (2012). Overview of biomass energy. In The biomass assessment handbook (pp. 23-48). Routledge.

      [18] Cline-Cole, R. A.; Main, H. A. C.; Nichol, J. E. On fuelwood consumption, population dynamics and deforestation in Africa. World Development, 1990 18(4), 513-527. https://doi.org/10.1016/0305-750X(90)90068-9.

      [19] Tong, TM; Asare, J; Rwenyagila, ER; Anye, V; Oyewole, OK; Fashina, AA; Soboyejo, WO. A Study of Factors that Influence the Adoption of Solar Powered Lanterns in a Rural Village in Kenya Perspect. Glob. Dev. Tech. 2015 14(4), 448-491.

      [20] Ezzati, M.; Kammen, D. M. Evaluating the health benefits of transitions in household energy technologies in Kenya. Energy Policy, 2002 30(10), 815-826. https://doi.org/10.1016/S0301-4215(01)00125-2.

      [21] Ministry of Lands, Mines and Energy, Department of Energy, Republic of Liberia. May 2009. National Energy Policy: an Agenda for Action and Economic and Social Development. Monrovia, Liberia.

      [22] Kousksou, T.; Allouhi, A.; Belattar, M.; Jamil, A.; El Rhaï¬ki, T.; Arid, A.; Zeraouli, Y. Renewable energy potential and national policy directions for sustainable development in Morocco. Renew. Sustain. Energy Rev. 2015, 47, 46–57. https://doi.org/10.1016/j.rser.2015.02.056.

      [23] Okello, C.; Pindozzi, S.; Faugno, S.; Boccia, L. Bioenergy potential of agricultural and forest residues in Uganda. Biomass Bioenergy 2013, 56, 515–525. https://doi.org/10.1016/j.biombioe.2013.06.003.

      [24] Deichmann U; Meisner, C.; Murray, S., Wheeler, D. The economics of renewable energy expansion in rural Sub-Saharan Africa. Energy Policy 2011, 39, 215–227. https://doi.org/10.1016/j.enpol.2010.09.034.

      [25] Mohammed, Y.S.; Mustafa, M.W.; Bashir, N. Status of renewable energy consumption and developmental challenges in Sub-Sahara Africa. Renew. Sustain. Energy Rev. 2013, 27, 453–463. https://doi.org/10.1016/j.rser.2013.06.044.

      [26] Nfah, E.M.; Ngundam, J.M.; Vandenbergh, M.; Schmid, J. Simulation of off-grid generation options for remote villages in Cameroon. Renew. Energy 2008, 33, 1064–1072. https://doi.org/10.1016/j.renene.2007.05.045.

      [27] Kaunda, CS. Energy situation, potential and application status of small-scale hydropower systems in Malawi. Renew. Sustain. Energy Rev. 2013, 26, 1–19. https://doi.org/10.1016/j.rser.2013.05.034.

      [28] Nzila, C.; Dewulf, J.; Spanjers, H.; Kiriamiti, H.; Van Langenhove, H. Biowaste energy potential in Kenya. Renew. Energy 2010, 35, 2698–2704. https://doi.org/10.1016/j.renene.2010.04.016.

      [29] Suberu, Y.; Bashir, N.; Wazir, M. Overuse of wood-based bioenergy in selected sub-Saharan Africa countries: Review of unconstructive challenges and suggestions. J. Clean. Prod. 2015, 96, 501–519. https://doi.org/10.1016/j.jclepro.2014.04.014.

      [30] Mohammed, Y.S.; Mokhtar, A.S.; Bashir, N.; Saidur, R. An overview of agricultural biomass for decentralized rural energy in Ghana. Renew. Sustain. Energy Rev. 2013, 20, 15–25. https://doi.org/10.1016/j.rser.2012.11.047.

      [31] Kihwele, S.; Hur, K.; Kyaruzi, A. Visions, scenarios and action plans towards next generation Tanzania power system. Energies 2012, 5, 3908–3927. https://doi.org/10.3390/en5103908.

      [32] Shaaban, M.; Petinrin, J.O. Renewable energy potentials in Nigeria: Meeting rural energy needs. Renew. Sustain. Energy Rev. 2014, 29, 72–84. https://doi.org/10.1016/j.rser.2013.08.078.

      [33] Subedi, M.; Matthews, R.; Pogson ,M.; Abegaz, A.; Balana, B.; Oyesiku-blakemore, J.; Smith, J. Can biogas digesters help to reduce deforestation in Africa? Biomass Bioenergy 2014, 70, 1–12. https://doi.org/10.1016/j.biombioe.2014.02.029.

      [34] Okello, C.; Pindozzi, S.; Faugno, S.; Boccia, L. Development of bioenergy technologies in Uganda: A review of progress. Renew. Sustain. Energy Rev. 2013, 18, 55–63. https://doi.org/10.1016/j.rser.2012.10.004.

      [35] Nsamba, H.K.; Hale, S.E.; Cornelissen, G.; Bachmann, R.T. Sustainable technologies for small-scale biochar production—A review. J. Sustain. Bioenergy Syst. 2015, 5, 10–31. https://doi.org/10.4236/jsbs.2015.51002.

      [36] Hensley, M.; Gu, S.; Ben, E. A comprehensive review of biomass resources and biofuels potential in Ghana. Renew. Sustain. Energy Rev. 2011, 15, 404–415. https://doi.org/10.1016/j.rser.2010.09.033.

      [37] Osei, W.Y.A.W. Rural energy technology: Issues and options for sustainable development in Ghana. Geoforum 1996, 27, 63–74. https://doi.org/10.1016/0016-7185(95)00047-X.

      [38] Kiplagat, J.K.; Wang, R.Z.; Li, T.X. Renewable energy in Kenya: Resource potential and status of exploitation. Renew. Sustain. Energy Rev. 2011, 15, 2960–2973. https://doi.org/10.1016/j.rser.2011.03.023.

      [39] Twaha, S.; Ramli, M.A.; Murphy, P.M.; Mukhtiar, M.U.; Nsamba, H.K. Renewable based distributed generation in Uganda: Resource potential and status of exploitation. Renew. Sustain. Energy Rev. 2016, 57, 786–798. https://doi.org/10.1016/j.rser.2015.12.151.

      [40] Fashina, A.; Mundu, M.; Akiyode, O.; Abdullah, L.; Sanni, D.; Ounyesiga, L. The Drivers and Barriers of Renewable Energy Applications and Development in Uganda: A Review. Clean Technologies 2018, 1(1), 1-31.

      [41] Fashina, A.A.; Azeko, S.T.; Asare, J.; Ani, C.J.; Anye, V.C.; Rwenyagila, E.R.; Dandogbesi, B.; Oladele, O.; Dyeris, M. A Study on the Reliability and Performance of Solar Powered Street Lighting Systems. Int. J. Sci. World 2017, 7, 110–118. https://doi.org/10.14419/ijsw.v5i2.8109.

      [42] Unit, Africa Energy, and Energy Sector Policy Notes Series. "Options for the development of Liberia’s energy sector." Washington, DC (2011).

      [43] Alfaro, J.; Graber, S.; Narayanan, T.; Levin, T. Rural Renewable Electrification in Liberia. Ann Arbor 2017.

      [44] Wesseh Jr; P. K.; Lin, B. Renewable energy technologies as beacon of cleaner production: a real options valuation analysis for Liberia. Journal of Cleaner Production, 2015, 90, 300-310. https://doi.org/10.1016/j.jclepro.2014.11.062.

      [45] Krishnan, R. Biomass residues for power generation: A simulation study of their usage at Liberia's plantations Master dissertation, University of Michigan, Michigan, USA (2016).

      [46] World data-info. Available online: https://www.worlddata.info/africa/liberia/energy-consumption.php (accessed on 1 June 2018).

      [47] World Bank IBRD-IDA Where We Work. Available on http://www.worldbank.org/en/country/liberia/overview (accessed on 1 June 2018).

      [48] World Bank. Sustainable Energy for All (SE4ALL) Database; from the SE4ALL Global Tracking Framework Led Jointly by the World Bank, International Energy Agency and the Energy Sector Management Assistance Program; World Bank: Washington, DC, USA, 2017.

      [49] IRENA. Africa 2030: Roadmap for a Renewable Energy Future; IRENA: Masdar City United Arab Emirates, 2015.

      [50] REN21. Renewables 2016 Global Status Report; REN21 Secretariat: Paris, France, 2016

      [51] Akella, A.K.; Saini, R.P.; Sharma, M.P. Social, economic and environmental impacts of renewable energy systems. Renew. Energy 2009, 34, 390–396. https://doi.org/10.1016/j.renene.2008.05.002.

      [52] Chien, T.; Hu, J.L. Renewable energy: An efficient mechanism to improve GDP. Energy Policy 2008, 36, 3045–3052. https://doi.org/10.1016/j.enpol.2008.04.012.

      [53] Sadorsky, P. Renewable energy consumption and income in emerging economies. Energy Policy 2009, 37, 4021–4028. https://doi.org/10.1016/j.enpol.2009.05.003.

      [54] Jiang, Z.; Lin, B. China’s energy demand and its characteristics in the industrialization and urbanization process. Energy Policy 2012, 49, 608–615. https://doi.org/10.1016/j.enpol.2012.07.002.

      [55] Panwar, N. L.; Kaushik, S. C.; Kothari, S. Role of renewable energy sources in environmental protection: a review. Renewable and Sustainable Energy Reviews, 2011, 15(3), 1513-1524. https://doi.org/10.1016/j.rser.2010.11.037.

      [56] Sathaye, J.; Lucon, O.; Rahman, A.; Christensen, J.; Denton, F.; Fujino, J.; Heath, G.; Mirza, M.; Rudnick, H.; Schlaepfer, A.; et al. Renewable Energy in the Context of Sustainable Development; Cambridge University Press: Cambridge, UK, 2011.

      [57] Twidell, J.; Weir, T. Renewable Energy Resources; Routledge: Abingdon, UK, 2015.

      [58] Karekezi, S.; Kithyoma, W.; Initiative, E. Renewable Energy Development. In Proceedings of the Workshop on African Energy Experts on Operationalizing the NEPAD Energy Initiative, Dakar, Senegal, 2–4 June 2003; pp. 2–4.

      [59] Karekezi, S.; Kithyoma, W. Renewable energy strategies for rural Africa: Is a PV-led renewable energy strategy the right approach for providing modern energy to the rural poor of sub-Saharan Africa? Energy Policy 2002, 30, 1071–1086. https://doi.org/10.1016/S0301-4215(02)00059-9.

      [60] Brew-Hammond, A. Energy access in Africa: Challenges ahead. Energy Policy 2010, 38, 2291–2301. https://doi.org/10.1016/j.enpol.2009.12.016.

      [61] Rabah, K.V. Integrated solar energy systems for rural electrification in Kenya. Renew. Energy 2005, 30, 23–42. https://doi.org/10.1016/j.renene.2004.04.011.

      [62] Alazraque-Cherni, J. Renewable energy for rural sustainability in developing countries. Bull. Sci. Technol. Soc. 2008, 28, 105–114. https://doi.org/10.1177/0270467607313956.

      [63] Markvart, T., & Bogus, K. (Eds.). (2000). Solar electricity (Vol. 6). John Wiley & Sons.

      [64] World Atlas, Location of Liberia. Available on: https://www.worldatlas.com/webimage/countrys/africa/liberia/lrlatlog.htm (accessed on 12 June 2018).

      [65] Fashina A.A.; Adama K.K.; Zebaze M.G.; Soboyejo W.O. Improving the Performance of Light Trapping in Crystalline Silicon Solar Cell through Effective Surface Texturing. Trans Tech Publications, 1132, (2016) 144-159.

      [66] Fashina A.A.; On the Effect of Surface Texture and Nanoscale Surface Oxides on the Optical and Mechanical Properties of Silicon Single Crystals and MEMS Thin films, PhD Thesis AUST, Abuja, Nigeria. (2015).

      [67] Asare J.; Adeniji S.A.; Oyewole O.K.; Agyei-Tuffour B.; Du J.; Arthur E.; Fashina A.A.; Zebaze Kana M.G.; Soboyejo W.O. Cold Welding of Organic Light Emitting Diode: Interfacial and Contact Models. AIP Advances 6 (6), (2016) 065125-1 -065125-12.

      [68] Oyewole O.; Yu D.; Du J.; Asare J.; Anye V.; Fashina A.; Zebaze Kana M.G.; Soboyejo W.O. Lamination of Organic Solar Cells and Organic Light Emitting Devices: Models and Experiments. J. Appl. Phys. 118(7), (2015) 075302-075314. https://doi.org/10.1063/1.4928729.

      [69] Asare J.; Turkoz E.; Agyei-Tuffour B.; Oyewole O.K.; Fashina A.A.; Du J.; Zebaze Kana M.G.; Soboyejo W.O. Effect of pre-buckling on the bending of organic electronic structures. AIP Advances. 7(4), (2017) 045202-1 - 045202-10.

      [70] Oyewole O.; Yu D.; Du J.; Asare J.; Oyewole D.O.; Anye V.; Fashina A.; Zebaze Kana M.G.; Soboyejo W.O. Micro-wrinkling and delamination-induced buckling of stretchable electronic structures. J. Appl. Phys. 117(23), (2015) 235501-2355011. https://doi.org/10.1063/1.4922665.

      [71] Yu D.; Oyewole O.; Kwabi D.; Tong T.; Anye V.; Asare J.; Rwenyagila E.; Fashina A.; Akogwu O.; Du J.; Soboyejo W.O. Adhesion in flexible organic and hybrid organic/inorganic light emitting device and solar cells. J. Appl. Phys. 116(7), (2014) 074506-074509. https://doi.org/10.1063/1.4892393.

      [72] Fashina A.A.; Adama K.K.; Oyewole O.K.; Anye V.C.; Asare J.; Zebaze Kana M.G.; Soboyejo W.O. Surface texture and optical properties of crystalline silicon substrates. J. Renew. Sus. Ener., 7(6), (2015) 063119-1 - 063119-11.

      [73] Fashina A.A.; Adama K.K.; Abdullah L.A.; Ani C. J.; Oyewole O.K.; Asare J.; Anye V.C. “Atomic Force Microscopy Analysis of Alkali Textured Silicon Substrates for Solar Cell Applications.†Int. J. Phy. Research 2018 6(1), 13-17.

      [74] Fashina A.A.; Zebaze Kana M.G.; Soboyejo W.O. Optical reflectance of alkali-textured silicon wafers with pyramidal facets: 2D analytical model. J. Mater. Res., 2015 3(7), 904 - 913. https://doi.org/10.1557/jmr.2015.70.

      [75] Dabiri, J.O.; Greer, J.R.; Koseff, J.R.; Moin, P.; Peng, J. A new approach to wind energy: Opportunities and challenges. In Proceedings of the AIP Conference Proceedings, Berkeley, CA, USA, 8–9 March 2014; Volume 1652; pp. 51–57.

      [76] GWEC: Global Wind Statistics Report Annual Market Update 2016 Version. Available online: http://www.gwec.net/wp-content/uploads/vip/GWEC_PRstats2017_EN_WEB.pdf (accessed on 26 February 2018).

      [77] REEEP Liberia, 2012. Available online: https://www.reeep.org/liberia-2012 (accessed on 12 June 2018).

      [78] European Union Africa Infrastructure Trust Fund. Available online: http://www.eu-africa-infrastructure-tf.net/activities/grants/liberia-via-reservoir.htm (accessed on 12 June 2018).

      [79] Bowen, R. Geothermal Resources; Springer Science & Business Media: Berlin, Germany, 2012.

      [80] Glassley, W.E. Geothermal Energy: Renewable Energy and the Environment; CRC Press: Boca Raton, FL, USA, 2014. https://doi.org/10.1201/b17521.

      [81] Rittmann, B.E. Opportunities for renewable bioenergy using microorganisms. Biotechnol. Bioeng. 2008 100, 203–212. https://doi.org/10.1002/bit.21875.

      [82] Karaj, S.; Rehl, T.; Leis, H.; Müller, J. Analysis of biomass residues potential for electrical energy generation in Albania. Renew. Sustain. Energy Rev. 2010, 14, 493–499. https://doi.org/10.1016/j.rser.2009.07.026.

      [83] Demirbaş, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manag. 2001 42, 1357–1378. https://doi.org/10.1016/S0196-8904(00)00137-0.

      [84] Openshaw, K. Biomass energy: Employment generation and its contribution to poverty alleviation. Biomass Bioenergy 2010, 34, 365–378. https://doi.org/10.1016/j.biombioe.2009.11.008.

      [85] Bingh, LP. Opportunities for Utilizing Waste Biomass for Energy in Uganda. Master’s Thesis, Institutt for Energi-og Prosessteknikk, Trondheim, Norway, 2004.

      [86] Kshirsagar, M.P.; Kalamkar, V.R. A comprehensive review on biomass cookstoves and a systematic approach for modern cookstove design. Renew. Sustain. Energy Rev. 2014, 30, 580-603. https://doi.org/10.1016/j.rser.2013.10.039.

      [87] Subedi, M.; Matthews, R.; Pogson ,M.; Abegaz, A.; Balana, B.; Oyesiku-blakemore, J.; Smith, J. Can biogas digesters help to reduce deforestation in Africa? Biomass Bioenergy 2014, 70, 1–12. https://doi.org/10.1016/j.biombioe.2014.02.029.

      [88] Luthra S, Kumar S, Garg D, Haleem A. Barriers to renewable/sustainable energy technologies adoption: Indian perspective. Renew Sustain Energy Rev. 2015, 41, 762–76. https://doi.org/10.1016/j.rser.2014.08.077.

      [89] Polzin F, Migendt M, Täube FA, von Flotow P. Public policy influence on renewable energy investments—a panel data study across OECD countries. Energy Policy.2015, 80, 98–111. https://doi.org/10.1016/j.enpol.2015.01.026.

      [90] IRENA. Unlocking Renewable Energy Investment: The role of risk mitigation and structured finance. IRENA, Abu Dhabi; 2016.

      [91] Painuly, J.P. Barriers to renewable energy penetration; a framework for analysis. Renew. Energy 2001, 24, 73–89. https://doi.org/10.1016/S0960-1481(00)00186-5.

      [92] Sen S, Ganguly S. Opportunities, barriers and issues with renewable energy development – A discussion. Renew Sustain Energy Rev. 2017 Mar 169(Supplement C):1170–81. https://doi.org/10.1016/j.rser.2016.09.137.

      [93] Mundaca, T. L.; Mansoz, M.; Neij, L.; Timilsina, G.R. Transaction costs analysis of low-carbon technologies. Clim Policy.2013, 13(4), 490–513. https://doi.org/10.1080/14693062.2013.781452.

      [94] Murphy, P.M.; Twaha, S.; Murphy, I.S. Analysis of the cost of reliable electricity: A new method for analyzing grid connected solar, diesel and hybrid distributed electricity systems considering an unreliable electric grid, with examples in Uganda. Energy 2014, 66, 523–534. https://doi.org/10.1016/j.energy.2014.01.020.

      [95] Parthasarathi, A. Priorities in science and technology for development: Need for major restructuring. Curr. Sci. 2002, 82, 1211–1219.

      [96] Wilkins, G. Technology Transfer for Renewable Energy; Taylor & Francis: Abingdon, UK, 2010.

      [97] Mustapa, S.I.; Peng, L.Y.; Hashim, A.H. Issues and challenges of renewable energy development: A Malaysian experience. In Proceedings of the 2010 International Conference on Energy and Sustainable Development: Issues and Strategies (ESD), Chiang Mai, Thailand, 2–4 June 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–6. https://doi.org/10.1109/ESD.2010.5598779.

      [98] Peidong, Z.; Yanli, Y.; Yonghong, Z.; Lisheng, W.; Xinrong, L. Opportunities and challenges for renewable energy policy in China. Renew. Sustain. Energy Rev. 2009, 13, 439–449. https://doi.org/10.1016/j.rser.2007.11.005.

      [99] Martinot, E.; Chaurey, A.; Lew, D.; Moreira, J. R.; Wamukonya, N. Renewable energy markets in developing countries. Annu. Rev. Energy Environ. 2002, 27, 309–348. https://doi.org/10.1146/annurev.energy.27.122001.083444.

      [100] Karekezi, S.; Kithyoma, W.; Initiative, E. Renewable Energy Development. In Proceedings of the Workshop on African Energy Experts on Operationalizing the NEPAD Energy Initiative, Dakar, Senegal, 2–4 June 2003; pp. 2–4.

      [101] Verbruggen, A.; Fischedick, M.; Moomaw, W.; Weir, T.; Nadaï, A.; Nilsson, L.J.; Nyboer, J.; Sathaye, J. Renewable energy costs, potentials, barriers: Conceptual issues. Energy Policy 2010, 38, 850–861. https://doi.org/10.1016/j.enpol.2009.10.036.

      [102] Stigka EK, Paravantis JA, Mihalakakou GK. Social acceptance of renewable energy sources: A review of contingent valuation applications. Renew Sustain Energy Rev. 2014 Apr 1 32(Supplement C):100–6. https://doi.org/10.1016/j.rser.2013.12.026.

      [103] Pierson, P. When effect becomes cause: Policy feedback and political change. World Polit. 1993, 45, 595–628. https://doi.org/10.2307/2950710.

      [104] Vaughan, E.J.; Vaughan, T. Fundamentals of Risk and Insurance; John Wiley & Sons: Hoboken, NJ, USA, 2007.

      [105] Richards G, Noble B, Belcher K. Barriers to renewable energy development: A case study of large-scale wind energy in Saskatchewan, Canada. Energy Policy.2012 Mar 1 42(Supplement C):691–8. https://doi.org/10.1016/j.enpol.2011.12.049.

      [106] Halkos, G.E.; Tzeremes, N.G. Renewable energy consumption and economic efficiency: Evidence from European countries. J. Renew. Sustain. Energy 2013, 5, 041803. https://doi.org/10.1063/1.4812995.

      [107] Mendonça, M. Jacobs, D. Feed-in Tariffs Go Global: Policy in Practice. Renew. Energy World Int. Mag. 2009, 12, 1–6.

      [108] DeMartino, S.; Le Blanc, D. Estimating the Amount of a Global Feed-In Tariff; DESA Working Paper; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2010.

      [109] Akella, A. K.; Saini, R. P.; Sharma, M. P. Social, economic and environmental impacts of renewable energy systems. Renewable Energy, 2009, 34(2), 390-396. https://doi.org/10.1016/j.renene.2008.05.002.

      [110] Zhi, G.; Peng, C.; Chen, Y.; Liu, D.; Sheng, G.; Fu, J. Deployment of coal briquettes and improved stoves: possibly an option for both environment and climate ACS Publications 2009, 5586-5591.

  • Downloads

  • How to Cite

    A. Fashina, A., O. Akiyode, O., & M. Sanni, D. (2018). The status quo of rural and renewable energy development in Liberia: policy and implementation. SPC Journal of Energy, 1(1), 9-20. https://doi.org/10.14419/e.v1i1.14518