Review on experimental study of Nd:YAG laser beam welding, with a focus on aluminium metal matrix composites

  • Authors

    • Amit Jyoti Banerjee CHIEF SCIENTIST- CSIR- CENTRAL MECHANICAL ENGINEERING RESEARCH INSTITUTEDURGAPUR
    • Manoja Kumar Biswal Sr. Tech. Officer-AdMac, CSIR-CMERI,Durgapur
    • A K Lohar Principal Scientist-NMMT
    • H Chattopadhyay Associate Professor-Jadavpur University
    • Naga Hanumaiah Sr. Principal Scientust
    2016-08-26
    https://doi.org/10.14419/ijet.v5i3.5984
  • Nd, YAG Laser Welding, Al-MMC, Weld Quality, DOE, Optimization.
  • The demand for high performance materials particularly in aviation and automobile industries gradually increases, CO2 and Nd: YAG lasers are becoming most popular in processing these advanced materials. In this context, one of the most important process is joining by welding. It has been a constant endeavour by researchers to explore various methods and techniques to enhance the process efficiency of autogenous Nd: YAG laser welding of various materials i.e. without any filler materials. In this work, we present a comprehensive review of major research findings for the last decades or so, obtained by researchers about the effect of process parameters on autogenous laser beam welding (LBW) process performance. Main objective of such experimental research was to improve laser weld quality such as tensile strength, weld micro structure, heat affected zone (HAZ), weld penetration etc. In this paper, discussions are also made about different parameter optimisation techniques, design of experiments (DOE), modelling and simulation techniques, adopted by different researchers to achieve optimum weld quality. This review tries to bring out a foresight for direction of further research needed in this field.

    Author Biography

    • Amit Jyoti Banerjee, CHIEF SCIENTIST- CSIR- CENTRAL MECHANICAL ENGINEERING RESEARCH INSTITUTEDURGAPUR

      CHIEF SCIENTIST & HEAD
      MANUFACTURING TECHNOLOGY GROUP

  • References

    1. [1] J.W. Kaczmar, K. Pietrzak, W. Włosiński , The Production and application of metal matrix composite materials , Journal of Matl. Processing Technology, 2000, 106, 58-67 http://dx.doi.org/10.1016/S0924-0136(00)00639-7.

      [2] A. Vencl, I. Bobic, S. Arostegui, B. Bobic, A. Marinković, M. Babić, Structural, mechanical and tribological properties of A356 aluminium alloy reinforced with Al2O3, SiC and SiC + graphite particles , Journal of Alloys and Compounds,17 September 2010, Volume 506, Issue 2 , 631–639 http://dx.doi.org/10.1016/j.jallcom.2010.07.028.

      [3] Aluminum Matrix Composites (AMC) inserts for reinforced brake callipers by 3M (C) 3M 2003 98-000-0408-1 Rev.3, 7/03). https://web.archive.org/web/20040731120853/http://www.3m.com/market/industrial/mmc /PDFs/AMC_Brake_Caliper_Brochure_3

      .pdf

      [4] G.G. Chernyshov, S.A. Panichenko and T.A. Chernyshova, Welding of metal composites, Welding International, 2003, 17 (6), 487–492. http://dx.doi.org/10.1533/wint.2003.3155.

      [5] I. Spalding, Modern Laser Applications, Part B: Journal of Engineering Manufacture, August 1987; vol. 201, 3: pp. 165-174.

      [6] G. Chryssolouris, Laser Machining: Theory and Practice -Springer, Berlin, 1991.

      [7] A.K. Dubey, V. Yadava, Experimental study of Nd: YAG laser beam machining-An overview, Journal of Materials Processing Technology, 2008,195 (1), 15-26 http://dx.doi.org/10.1016/j.jmatprotec.2007.05.041.

      [8] D. Jun, L. Zheng, Y. Li, W. Yang, Z. Chiyu & Z. Yaocheng, Research on pulsed laser welding of TiB2-enhanced aluminum matrix composites, Int. J. Adv. Manufacturing Technologies, Published online 09 October 2015.

      [9] T. Norikazu, Y. Shigenori, H. Masao, Present and future of lasers for fine cutting of metal plate. J. Mater. Process. Technol. 1996, 62, 309–314. http://dx.doi.org/10.1016/S0924-0136(96)02426-0.

      [10] D-C Lim and D-G Gweon, A new criterion for quality monitoring of pulsed laser spot welding using an infrared sensor Part 1: The radiation feature as a criterion for quality monitoring ,Journal of Engineering Manufacture January 1, 1999 vol. 213 no. 1 51-57 http://dx.doi.org/10.1243/0954405991516642.

      [11] D-C Lim and D-G Gweon, A new criterion for quality monitoring of pulsed laser spot welding using an infrared sensor Part 2: Quality estimation using an artificial neural network, Part B: Journal of Engineering Manufacture January 1, 1999 vol. 213 no. 1 41-49 http://dx.doi.org/10.1243/0954405991516633.

      [12] D-C Lim, Y-B Cho, D-G Gweon, A robust in-process monitoring of pulsed laser spot welding using a point infrared sensor , Part B: Journal of Engineering Manufacture March 1, 1998 vol. 212 no. 3 241-250. http://dx.doi.org/10.1243/0954405981515653.

      [13] W.M. Steen, Laser Material Processing 3rd Edition,Springer, 2005.

      [14] J. Niu, L. Pan, M. Wang, C. Fu and X. Meng, Research on laser welding of aluminium matrix composite SiCw/6061. Vacuum 80, 2006, 1396-1399. http://dx.doi.org/10.1016/j.vacuum.2006.01.023.

      [15] J.F. Ready, LIA Handbook of Laser Materials Processing , Laser Institute of America,2001

      [16] N.B. Dahotre and S.P. Harimkar, Laser Fabrication and Machining of Materials, Springer, 2008

      [17] W.G. Cochran, G.M. Cox, Experimental Designs. Asia Publishing House, Bombay, 1959.

      [18] P. Bassani, E. Capello, D. Colombo, B. Previtali and M. Vedani, Effect of process parameters on bead properties of A359/SiC MMCs welded by laser. Composites2007, Part A 38, 1089–1098.

      [19] N. B. Dahotre, M. H. McCay, T. D. McCay, S. Gopinathan and L. F. Allard, Pulse laser processing of a SiC/Al-alloy metal matrix composite. J. Mater. Res., 1991, Vol. 6, No. 3, March, 514-529. http://dx.doi.org/10.1557/JMR.1991.0514.

      [20] I. Calliari, M. Dabalà and M. Penasa, Pulsed Nd: YAG Laser Welding of MMCs. Advanced Engineering Materials, 2000, 2, No. 10, 653-656. http://dx.doi.org/10.1002/1527-2648(200010)2:10<653::AID-ADEM653>3.0.CO;2-Q.

      [21] T.M. YUE, J.H. XU and H.C. MAN, Pulsed Nd-YAG Laser Welding of A SiC Particulate Reinforced Aluminium Alloy Composite. Applied Composite Materials, 1997, 4: 53-64. http://dx.doi.org/10.1007/BF02481388.

      [22] D.J. Lloyd, Particle reinforced aluminium and magnesium matrix composites. International Materials Reviews, 1994, Vol. 39, 1-23 http://dx.doi.org/10.1179/imr.1994.39.1.1.

      [23] P.W. Fuerschbach and M.J. Cieslak, Restraint Effects in Laser Welding of an Aluminum MMC. IEEE Transactions on Components, Packaging, and Manufacturing Technology-PART B: Advanced Packaging, Vol. 17, No. I, 1994 February, 108-114.

      [24] A. Grabowski, M. Nowak and J. Åšleziona, Optical and conductive properties of AlSi-alloy/SiCp composites: application in modelling CO2 laser processing of composites. Optics and Lasers in Engineering 2005, 43, 233-246. http://dx.doi.org/10.1016/j.optlaseng.2004.06.010.

      [25] H.M. Wang, Y.L. Chan and L.G. Yu, In-situ weld-alloying/laser beam welding of SiCp/6061 Al MMC. Material Science and Engineering, 2000, A293, 1-6.

      [26] S. KaraoÄžlu, Effects of B4C Addition on the Laser Beam Welding Characteristics of Al/SiC MMCs produced by P/M. Pamukkale University Journal of Engineering Sciences, 2011,Volume No. 17, Issue: 1.

      [27] X. Huang, C. Liu, X. Lv, G. Liu and F. Li, Aluminium alloy pistons reinforced with SiC fabricated by centrifugal casting. Journal of Material Processing Technology, 2011, 211, 1540-1546. http://dx.doi.org/10.1016/j.jmatprotec.2011.04.006.

      [28] D. Storjohann, S.S. Babu, S. A. David and P. Sklad, Friction Stir Welding of Aluminum Metal Matrix Composites. Publication by M and C Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6096, under US Govt. contract DE-AC05-00OR22725.

      [29] K.W. Guo, Influence of In Situ Reaction on the Microstructure of SiCp/AlSi7Mg Welded by Nd: YAG Laser with Ti Filler. Journal of Materials Engineering and Performance, 2010, Vol.19, 52-58. http://dx.doi.org/10.1007/s11665-009-9422-x.

      [30] C. Mao-ai, W. Chuan-song and Z. Zeng-da, Electron beam welding of SiCp/LD2 composite. Transaction of Nonferrous Metals Society of China, 2006, 16, 818-823.

      [31] C. Meng, H-C. Cui, F-G. Lu and X-H. Tang, Evolution of TiB2 particles during laser welding on aluminium metal matrix composites reinforced with particles. Trans. Nonferrous Met. Soc. China, 2013, 1543-1548. http://dx.doi.org/10.1016/S1003-6326(13)62628-X.

      [32] J. Guo, P. Gougeon and X.-G. Chen, Study on laser welding of AA1100-16 vol. % B4C metal–matrix composites. Composites: Part B 43, 2012, 2400-2408. http://dx.doi.org/10.1016/j.compositesb.2011.11.044.

      [33] A.K. Lohar, B.N. Mondal and S.C. Panigrahi, Effect of Mg on the Microstructure and Mechanical Properties of Al0.3Sc0.15Zr-TiB2 Composite. JMEPEG, 2011, 20(9):1575–1582. http://dx.doi.org/10.1007/s11665-010-9829-4.

      [34] Z. Tang, T. Seefeld and F. Vollertsen, Grain Refinementy by Laser Welding of AA 5083 with addition of Ti/B. Physics Proceedia 2011;12, 123-133. http://dx.doi.org/10.1016/j.phpro.2011.03.016.

      [35] J. HUANG, Z. LI, H. CUI, C. YAO and Y. WU, Laser welding and laser cladding of high performance materials. Physics Procedia 5, 2010, 1–8. http://dx.doi.org/10.1016/j.phpro.2010.08.023.

      [36] A.V. SMITH and D.D.L. Chung, Titanium diboride particle-reinforced aluminium with high wear resistance. Journal of Material Science 1996, 31, 5961-5973. http://dx.doi.org/10.1007/BF01152146.

      [37] N. El-Mahallawy, M.A. Taha, A.E.W. Jarfors and H. Fredrikson, on the reaction between aluminium, K2TiF6 and KBF4. Journal of Alloys and Compounds, 1999, 292, 221-229. http://dx.doi.org/10.1016/S0925-8388(99)00294-7.

      [38] Y. Zhang, N. Ma and H. Wang, Effect of particulate/Al interface on the damping behaviour of in situ TiB2 reinforced aluminium composite. Elsevier: Materials Letters 2007, 61, 3273-3275. http://dx.doi.org/10.1016/j.matlet.2006.11.052.

      [39] W. Luan, C. Jiang, V. Ji, Y. Chen and H. Wang, Investigation for warm peening of TiB2/Al composite using X-ray diffraction. Material Science and Engineering, 2008, a 497, 374-377.

      [40] S.J. Vijay and N. Murugan, Influence of tool pin profile on the metallurgical and mechanical properties of friction stir welded Al-10 wt. % TiB2 metal matrix composites. Materials and Design 31, 2010, 3585-3589. http://dx.doi.org/10.1016/j.matdes.2010.01.018.

      [41] Z. He-guo, W. Heng-zhi, G.E. Liang-qi, C. Shi and W.U. Shen-qing, Formation of composites by exothermic dispersion reaction in Al-TiO2-B2O3 system. Transaction of Nonferrous Society of China, 2007. 17, 590-594. http://dx.doi.org/10.1016/S1003-6326(07)60139-3.

      [42] K.M. Shorowordi, T. Laoui, A.S.M.A. Haseeb, J.P. Celis and L. Froyen, Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study. Journals of Materials Processing Technology, 2003, 142, 738-743. http://dx.doi.org/10.1016/S0924-0136(03)00815-X.

      [43] J. M. Gómez de Salazar and M.L. Barrena, Dissimilar fusion welding of AA7020/MMC reinforced with Al2O3 particles. Microstructures and Mechanical Properties. Materials Science and Engineering 2003, A352, 162-168. http://dx.doi.org/10.1016/S0921-5093(02)00891-2.

      [44] M.I.S. ISMAIL, Y. OKAMOTO, A. OKADA, Y. UNO and M. MUKHTAR, Micro-welding of High Thermal Conductive Material Aluminum-Graphite Composite by Pulsed Nd:YAG Laser. JLMN-Journal of LASER Micro/Nanoengineering Vol.8, 2013 No.1, 90-96.

      [45] A. Squillace, U. Prisco, S. Ciliberto and A. Astarita, Effect of welding parameters on morphology and mechanical properties of Ti-6Al-4V laser beam welded butt joints. Journal of Materials Processing Technology2012, 212, 427-436. http://dx.doi.org/10.1016/j.jmatprotec.2011.10.005.

      [46] T. Prater, Solid-State Joining of Metal Matrix Composites: A survey of Challenges and Potential Solutions. Material and Manufacturing Processes, 2011, 26: 636-648. http://dx.doi.org/10.1080/10426914.2010.492055.

      [47] X. Cao, M. Jahazi, J.P. Immarigeon and W. Wallace, A review of laser welding techniques for magnesium alloys. Journal of Materials Processing Technology, 2006, 171, 188-204. http://dx.doi.org/10.1016/j.jmatprotec.2005.06.068.

      [48] S. Fukumoto, A. Hirose and K.F. Kobayashi, Evaluation of the strength of diffusion bonded joints in continuous fiber reinforced metal matrix composites. Journal of Materials Processing Technology, 1997, 68, 184-191. http://dx.doi.org/10.1016/S0924-0136(96)00026-X.

      [49] J.W. Kaczmar, K. Pietrzak and W. Wlosiński, The production and application of metal matrix composite materials. Journal of Material Processing Technology, 2000, 106, 58-67. http://dx.doi.org/10.1016/S0924-0136(00)00639-7.

      [50] M. Rosso, Ceramic and metal matrix composites: Routes and properties. Journal of Material Processing Technology, 2006, 175, 364-375. http://dx.doi.org/10.1016/j.jmatprotec.2005.04.038.

      [51] VI.V. Skorokhod and V.D. Krstic, Processing, Microstructure and Mechanical Properties of B4C-TiB2 particulate Sintered Composites. Part II. Fracture and Mechanical Properties. Powder Metallurgy and Metal Ceramics, 2000, Vol. 39, Nos. 9-10.

      [52] P. Kah and J. Martikainen, Current Trends in Welding Processes and Materials: Improve in Effectiveness. Rev. Adv. Mater. Sci., 2012,30, 189-200.

      [53] R. Gracía, V.H. López, C. Natividad, R.R. Ambriz and M. Salazar, Fusion Welding with Indirect Electric Arc. Book “Arc weldingâ€, Edited by Prof. Wladislav Sudnik, ISBN: 978-953-307-642-3, In Tech, www.intechopen.com/books/arc-welding/fusion-welding-with-indirect-electric-arc, 2011, 21-44.

      [54] M. Xia, N. Sreenivasan, S. Lawson, Y. Zhou and Z. Tian, A Comparative study of Formability of Diode Laser Welds in DP980 and HSLA Steels. Transactions of the ASME, 2007, 446/ vol.129. http://dx.doi.org/10.1115/1.2744417.

      [55] D.C. Montgomery, Design and Analysis of Experiments, fourth ed. John Wiley and Sons, New York, 1997.

      [56] M.S. Phadke, Quality Engineering using Robust Design. Prentice-Hall, Englewood Cliffs, NJ. 1989.

      [57] J. Antony, Simultaneous optimization of multiple quality characteristics in manufacturing processes using Taguchi’s quality loss function. Int. J. Adv. Manuf. Technol. , 2001,17, 134–138 http://dx.doi.org/10.1007/s001700170201.

      [58] F.R. Liu, K.C. Chan and C.Y. Tang, Numerical Modelling of the thermo mechanical behaviour of particle reinforced metal matrix composites in laser forming by using a multi-particle cell model. Composite Science and Technology, 2008, 68, 1943-1953. http://dx.doi.org/10.1016/j.compscitech.2007.03.037.

      [59] F. Bonollo, A. Tiziani and M. Penasa, CO2 laser welding of aluminium matrix composites. Int. J. of Materials and Product Technology, 2002, Vol. 17, Nos. 3/4, 291. http://dx.doi.org/10.1504/IJMPT.2002.001316.

      [60] M. Cholewa, Simulation of solidification process for composite micro-region with incomplete wetting of reinforcing particle. Journals of Materials Processing Technology, 2005, 164-165, 1181-1184. http://dx.doi.org/10.1016/j.jmatprotec.2005.02.132.

      [61] Y.C. Zhou, S.G. Long and Y.W. Liu, Thermal failure mechanism and failure threshold of SiC particle reinforced metal matrix composites induced by laser beam. Mechanics of Materials, 2003, 35, 1003-1020. http://dx.doi.org/10.1016/S0167-6636(02)00322-8.

      [62] H. CUI, F. LU, X. TANG and S. YAO, Particles migration behaviour during laser keyhole welding of ZL101/TiB2 composites. Acta Metallurgica Sinica (Engl. Lett.), 2012, Vol25 no.3, 190-200.

      [63] H. Yi, N. Ma, Y. Zhang, X. Li and H. Wang, Effective elastic moduli of Al-Si composites reinforced in situ with TiB2 particles. Scripta Maerialia, 2006, 54, 1093-1097. http://dx.doi.org/10.1016/j.scriptamat.2005.11.070.

      [64] J. Zhou, A. Khalilollahli and H.L. Tsai, Thermal-Mechanical Modelling of Pulsed Laser Keyhole Welding of 304 Stainless Steel. Journal of Engineering and Technology, 2012, Vol. 1, no. 3, pp. 134-140.

      [65] A. Singh, D.E. Cooper, N.J. Blundell, D.K. Pratihar and G.J. Gibbons, Modelling of Weld Geometry and Cross-sectional Profile in Laser Welding of Plain Carbon Steel using Neural Networks and Genetic Algorithms. International Journal of Computer Integrated Manufacturing, 2014, Vol. 27, No. 7, 656–674. http://dx.doi.org/10.1080/0951192X.2013.834469.

      [66] G.A. Moraitis and G.N. Labeas, Residual stress and distortion calculation of laser beam welding for aluminium lap joints. Journals of Materials Processing Technology, 2008, 198, 260-269. http://dx.doi.org/10.1016/j.jmatprotec.2007.07.013.

      [67] J. Zhou, H. Tsai and P. Wang, Transport Phenomena and Keyhole Dynamics during Pulsed Laser Welding. Transactions of the ASME, 2006, 128, 680-690.

      [68] W.S. Chang and S.J. Na, Prediction of Laser-Spot-Weld Shape by Numerical Analysis and Neural Network. Metallurgical and Materials Transactions B, 2001, 32, 4, 723-731. http://dx.doi.org/10.1007/s11663-001-0126-3.

      [69] B. Acherjee, S. Mondal, B. Tudu and D. Misra, Application of artificial network for predicting weld quality in predicting welding quality in laser transmission welding of thermoplastics. Applied Soft Computing, 2011, 11, 2548-2555. http://dx.doi.org/10.1016/j.asoc.2010.10.005.

      [70] K.R. Balasubramanian, G. Buvanashekaran and K. Sankaranarayanasamy, Modeling of laser beam welding of steel sheet butt joint using neural networks. CIRP Journal of Manufacturing Science and Technology, 2010, 3, 80-84. http://dx.doi.org/10.1016/j.cirpj.2010.07.001.

      [71] L.M. Galantucci, L. Tricarico and R. Spina, a Quality Evaluation Method for Laser Welding of Al Alloys through Neural Networks. Annals of the CIRP, 2000, 49/1, 131-134. http://dx.doi.org/10.1016/S0007-8506(07)62912-6.

      [72] T. Mahmood, A. Mian, M.R. Amin, G. Auner, R. Witte, H. Herfurth and G. Newaz, Finite element modelling of transmission laser microjoining process. Journal of Materials Processing Technology, 2007, 186, 37-44. http://dx.doi.org/10.1016/j.jmatprotec.2006.11.225.

      [73] G. Padmanaban and V. Balasubramanian, Optimization of laser beam welding process parameters to attain maximum strength in AZ31B magnesium alloy. Optics and Laser Technology, 2010, 42, 1253-1260. http://dx.doi.org/10.1016/j.optlastec.2010.03.019.

      [74] B. Acherjee, A.S. Kuar, S. Mitra and D. Misra, Modelling of Laser Transmission contour welding Process using FEA and DOE. Optics and Laser Technology, 2012, 44, 1281–1289. http://dx.doi.org/10.1016/j.optlastec.2011.12.049.

      [75] M. Balasubramanian, V. Jayabalan and V. Balasubramanian, Developing mathematical models to predict grain size and hardness of argon tungsten pulse current arc welded titanium alloy. Journal of Material Processing Technology, 2008, 196, 222-229. http://dx.doi.org/10.1016/j.jmatprotec.2007.05.039.

      [76] K.Y. Benyounis and A.G. Olabi, Optimizing of different welding processes using statistical and numerical approaches- A reference guide. Advances in Engineering Software. 2008, Volume 39, Issue 6, Pages 483–496. http://dx.doi.org/10.1016/j.advengsoft.2007.03.012.

      [77] H.R. Kim and K.Y. Lee, Using the orthogonal array with grey relational analysis to optimize the laser hybrid welding of a 6061-T6 Al alloy sheet, Journal of Engineering Manufacture August 1, 2008 vol. 222 no. 8, 981-987. http://dx.doi.org/10.1243/09544054JEM1070.

      [78] H. Durmuş and C. Meriç, Weldability of Al99-SiC composites by CO2 Laser Welding, Journal of Composite materials, Vol43, No.13/2009, 1435-1450.

  • Downloads

  • How to Cite

    Banerjee, A. J., Biswal, M. K., Lohar, A. K., Chattopadhyay, H., & Hanumaiah, N. (2016). Review on experimental study of Nd:YAG laser beam welding, with a focus on aluminium metal matrix composites. International Journal of Engineering & Technology, 5(3), 92-101. https://doi.org/10.14419/ijet.v5i3.5984