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Abstract 
 

Highdata rate cognitive radio (CR) systems require high speed Analog-to-Digital Converters (ADC). This requirement imposes many 

restrictions on the realization of the CR systems. The necessity of high sampling rate can be significantly alleviated by utilizing analog to 

information converter (AIC). AIC is inspired by the recent theory of Compressive Sensing (CS), which states that a discrete signal has a 

sparse representation in some dictionary, which can be recovered from a small number of linear projections of that signal. This paper 

proposes an efficient spectrum sensing technique based on energy detection, compression sensing, and de-noising techniques. De-noising 

filters are utilized to enhance the traditional Energy Detector performance through Signal-to-Noise (SNR) boosting. On the other hand, 

the ordinary sampling provides an ideal performance at a given conditions. A near optimal performance can be achieved by applying 

compression sensing. Compression sensing allows signal to be sampled at sampling rates much lower than the Nyquist rate. The system 

performance and ADC speed can be easily controlled by adjusting the compression ratio. In addition, a proposed energy detector tech-

nique is introduced by using an optimum compression ratio. The optimum compression ratio is determined using a Genetic Algorithm 

(GA) optimization tool. Simulation results revealed that the proposed techniques enhanced system performance. 
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1. Introduction 

There is a large demand on high data rate wireless services over 

spectrum-based communications. Because of the inefficient utili-

zation of the allowed spectrum, unlicensed bands should be uti-

lized without making interference with the licensed bands. Cogni-

tive radio systems have become the most reliable system to utilize 

these unlicensed bands depending on spectrum sensing. Spectrum 

sensing (SS) offers the Secondary Users (SU) an access to these 

unlicensed bands without making an interference with the Primary 

Users (PU). Energy detection is the most widely used technique 

for spectrum sensing because of its low computational and imple-

mentation complexities as mentioned in [1]. On the other hand, 

energy detection suffers of the poor performance under low SNR 

scenarios as presented in [2]. Hybrid Slantlet transforms (HST) 

has been used in [3] and [4], as a de-noising technique to solve the 

noise impact alleviation. Moreover, HST is a set of digital filters, 

which separate the noise from the non-stationary PU signals. 

CS is an acquisition method that can enable sampling sparseor 

compressible signals in some basis, at a rate much lower than 

Nyquist-rate [5-6]. CS found its way to digital multimedia, includ-

ing video, medical imaging and high-quality speech as well as 

wide-band communication applications [7]. 

Sensing of a wideband spectrum is a very challenging problem 

due to its high sampling rate requirements. This led to a complex 

and an expensive hardware problem. CS is introduced to reduce 

the number of samples required to acquire the spectrum, by ex-

ploiting the unique sparsity in the wide-band spectrum. 

In this paper, a new high performance spectrum sensing technique 

is introduced. It is based on ED, CS, and De-noising techniques. 

CS is utilized to reduce the number of samples required to acquire 

the spectrum. On the other hand, De-noising filters, such as Re-

cursive Lease Square (RLS) and Wavelet filters, are used to in-

crease SNR of the received signal. Simulation results show that 

utilization of de-noising filters is significantly enhanced the Re-

ceiver Operating Characteristics (ROC) curves of the CR system. 

In addition, the utilization of CS provides a close performance 

compared to traditional Nyquist sampling system. This paper is 

organized as follows. In section 2, spectrum sensing and tradition-

al energy detector are briefly described. The CS and its recovery 

algorithms are briefly introduced in section 3. The de-noising 

filters are described in section 4. The proposed spectrum sensing 

technique is introduced in section 5. Finally, simulation results are 

discussed in section 6.  

2. Spectrum sensing and energy detector 

This part introduces a brief background on ED. First a primary 

signal is considered as s(n). The primary signal has a carrier fre-

quency fcwith a bandwidth of W Hz, which can be detected by a 

secondary users’ receiver. Then, the signal received at the receiver 

expressed as: 

 

y (n) = s(n) + u(n)                                                                      (1) 

 

Wheres(n)denotes the detected signal, u(n) is the Additive White 

Gaussian Noise (AWGN). AWGN has a mean of  μu = 0  and 

varianceσu
2 , and n is the sample index. The primary user is detect-

ed between a two hypotheses. The two hypotheses are the absence 

of the received primary signal and the presences of the primary 

signal which denoted as Ho and H1 respectively. The two mathe-

matical hypotheses are expressed in the following equations: 
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Ho: y (n) = u (n)                                                                          (2) 

 

H1 ∶  y (n) = s(n) + u(n)                                                             (3) 

 

Energy in primary signal is measured through ED. The differentia-

tion between the above two hypotheses is calculated through a 

decision metric equation expressed as:  

 

M(y) =
1

N
∑ |y(n)|2N

n=1
                                                                (4) 

 

By assuming τ to be sensing time and N is a total number of sam-

ples, the relation between them is expressed by the following 

equation: 

 

N = τfs                                                                                           (5) 

 

The decision metric M(y) is a random variable which has a Prob-

ability Density Function (PDF). For a large number of samples N 

according to [8], usually N ≥ 250, a Gaussian approximation is 

used to the PDF of test statistics M(y) under either hypothesis: Ho 

noise alone, or H1signal with noise. This is done by using Central 

Limit Theorem (CLT) [8]. 

The probability of an algorithm correctly detects the presence of a 

primary signal is called probability of detection ( Pd ), and the 

probability of an algorithm falsely declares the presence of a pri-

mary signal is called probability of false alarm (Pf) under hypoth-

esisH1 and Ho respectively [8]. The probability of false alarm is 

given by: 

 

Pf(ϵ, τ) = Q ((
ϵ

σu
2 − 1) √τfs)                                                       (6) 

 

Probability of detection can be approximated by: 

 

Pd(ϵ, τ) = Q ((
ϵ

σu
2 − γ − 1) √

τfs

2γ+1
)                                             (7) 

 

Where Q(·) is the complementary distribution function of the 

standard Gaussian, according to [6] i.e. 

 

Q(x) =
1

√2π
∫ exp

∞

x
(−

t2

2
) dt                                                         (8) 

 

γ =
σs

2

σu
2                                                                                        (9) 

 

Where σs
2  is signal variance and γ is SNR. The probability of 

missed detection can be written as: 

 

Pmd = 1 − Pd                                                                              (10) 

 

From equation (6), detection threshold ϵ is related to the probabil-

ity of false alarm as follows: 

 

ϵ = (
Q−1(Pf)

√τfs
+ 1) σu

2                                                                     (11) 

 

As shown in Fig. 1, the energy detector consists of three main 

parts. The first part is noise pre-filter which is used to limit noise 

bandwidth. The second part is squaring device which is used to 

calculate the energy of the filtered signal. Finally, the third part is 

an integrator which determines the energy of the filtered received 

signal over the sensing time intervalτ. The integrator output is 

considered to be the test statistic of the two hypothesis Ho  and H1. 

 

 

 
Fig. 1: Energy Detector Simplified Model. 

3. Compressive sensing 

The theory of CS was developed by Donho and Cande’s [9], [10]. 

In a traditional sampling theorem, the signal is sampled using 

Nyquist rate, whereas with the help of CS the signal is sampled 

below the Nyquist rate. This is possible because the signal is 

transformed into a domain in which the signal has a sparse repre-

sentation. Then the signal is reconstructed from the samples by 

exploiting the sparsity property [11], [12]. 

3.1. Signal representation and sparsity 

Suppose there is a basis Ψ (i.e. inverse Wavelet Transform (WT), 

inverse Discrete Cosine Transform (DCT) and inverse Discrete 

Fourier Transform (DFT)) in which real value signal X is sparse. 

The real-valued signal can be represented as [9], [10]: 

 

X = Ψf                                                                                         (12) 

 

Where Ψ is N×N  matrix whose columns are orthonormal basis 

functions, and f is sparse coefficients vector. If there are only k 

non-zero coefficients in the vector f, we can say that X is k sparse. 

According to the CS theory [9], [10], state that X can be accurately 

recovered from M random measurements over the measurement 

matrix according to (13) [9], [10]. 

 

ycs = ΦX                                                                                      (13) 

 

Where ycs  is a M  dimensional measurement vector with M ≪
N and Φ is M×N  random measurement matrix which represents 

the measurement process. Typically M ≥ const ×klog(
N

k
) [9], [10]. 

Substituting (12) into (13): 

 

ycs = ΨΦf = Af                                                                           (14) 

 

Where A = ΨΦ the sensing matrix is typically full rank. 

3.2. Recovery algorithms for CS 

By examining the compressed sensing equation: 

 

ycs = Af                                                                                       (15) 

 

The direct solution involves solving M  equation in N un-

knowns.This led to determination solution set. In order to solve 

this ambiguity, the sparsity should be manipulated in the recovery 

algorithms of the sparse signal f. 
Let f now be a sparse vector. It is quite intuitive to recover f from 

knowledge of ycs by solving: 

 

f̂ = argmin‖f‖0                                                                           (16) 

 

s. t ycs = Af  
 

Where the zeroth order norm ‖. ‖0measures the number of non-

zero values in a vector and it is the faithful representation of the 

sparsity order. However, this measure is nonlinear and the recov-

ery algorithm in this case in NP-hard [10], [13]. The main idea of 

Chen, Donoho, and Saunders [9] was to substitute the lo norm by 

the closest convex norm, which is the l1 norm. This leads to the 

following minimization problem, which called Basis Pursuit (BP) 

[9], [10]: 
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f̂ = argmin‖f‖1                                                                           (17) 

 

s. 𝑡 𝑦𝑐𝑠 = 𝐴𝑓  
 

There are many types of recovery algorithms, which can be sug-

gested. They can, generally, be classified into greedy algorithms 

and convex optimization based algorithms. Greedy algorithms 

iteratively approximate the coefficients and the support of the 

original signal. They have the advantage of being very fast and 

easy implementation. The simplest effective greedy algorithm is 

used. This algorithm called Orthogonal Matching Pursuit (OMP) 

[14], [15]. 

OMP is one of the earliest methods for sparse approximation. 

Basic references for this method in the signal processing literature 

are introduced in [14] and, [15]. However, the idea has appeared 

for the first time in variable selection in regression in [15].  

Another fundamental family of algorithms for sparse recovery 

replaces the combinatorial 𝑙𝑜function with the 𝑙1-norm, yielding 

convex optimization problems. In a concrete sense [16], the 𝑙1-

norm is the closest convex function to the 𝑙𝑜function, so this re-

laxation is quite natural. 

The proposed algorithm formulates (16) in convex optimization 

form [17]. This led to enabling the use of many available well 

developed optimization packages. One possibility to solve (16) is 

to use CVX package [18], [19].  

4. De-noising filters 

In this section, two powerful de-noising filters are briefly intro-

duced to reduce the effect of the noise on the received signal. 

4.1. Recursive least square filter 

Recursive Least Square (RLS) filter is an adaptive filter. Its fre-

quency response is adjustable to enhance its performance accord-

ing to some criterion. This allows the RLS filter to adapt and 

change. RLS filter consist of two parts: the first part is a digital 

filter with adjustable coefficients. The second part is an adaptive 

algorithm, which can modify filter coefficients [20], [21]. 

An adaptive filter consists of two distinct parts: a digital filter with 

adjustable coefficients, and an adaptive algorithm which is used to 

adjust or modify the coefficients of the filter [8] and [20]. RLS can 

be briefly modeled as in Fig. 2 [8]. 

 

 
Fig. 2: RLS Filter Model [8]. 

 

From Fig.2, two input signals 𝑦(𝑛)and 𝑢(𝑛) are applied simulta-

neously to an adaptive filter where, 𝑦(𝑛) is a contaminated signal 

containing both uncorrelated desired signal 𝑠(𝑛)and noise 𝑢(𝑛). 

The main objective of the adaptive algorithm is to produce an 

optimum estimation of noise �̂�(𝑛)in the contaminated signal. This 

can be achieved by using a suitable adaptive algorithm to mini-

mize noise [20]. A simple equation of the RLS filter can be ex-

pressed as: 

 

𝑒(𝑛) = 𝑦(𝑛)– �̂�(𝑛) = 𝑠(𝑛) + 𝑢(𝑛) − �̂�                                     (18) 

Where 𝑒(𝑛) is the error signal, which has two purposes; the first 

one is to estimate the desired signal and the second is to adjust 

filter coefficients. 

4.2. Wavelet de-noising filter 

Wavelet is defined as wave-like oscillation with amplitude starts 

out at zero, increase, and then decreases back to zero. In statistics, 

recovering an underlying function from a noisy signal always 

modeled using regression model. This method is called Wavelet 

de-noising by Thresholding. Suppose that there is a number of 𝑛 

noisy samples of a function 𝑠. 
 

𝑦𝑖 =  𝑠(𝑡𝑖) +  𝜎 𝑢(𝑛), 𝑖 =  1. . . 𝑛                                                (19) 

 

Where 𝑦  is the noisy data , 𝑦 = (𝑦1, . . . , 𝑦𝑛) , and 𝑢(𝑛)  is 

AWGN,𝑁 (0 , 𝜎𝑢
2)  and the noise level 𝜎 is unknown. The main 

goal is to recover function 𝑠from the noisy data 𝑦𝑖 that satisfies the 

following equation: 

 

�̂� = 𝑚𝑖𝑛
�̂�

‖�̂� − 𝑠‖2                                                                       (20) 

 

Where �̂� = �̂�(𝑦).  the thresholding of the wavelet coefficients is 

usually applied only to the detail coefficients of 𝑦 rather than the 

approximation coefficients. Because the approximation coeffi-

cients always contain the most important components of the signal, 

and are less affected by noise. Thresholding will set significant 

coefficients, whose values will be below a certain threshold lev-

el 𝜆, to zero [23]. 

5. Proposed spectrum sensing technique 

In this section, an efficient spectrum sensing technique based on 

de-noising filters and CS is introduced. Fig.3 shows the block 

diagram of the proposed technique. CS allows signal sampling at 

sampling rates much lower than the nyquist rate. In this case, low-

er speed ADCs can be utilized. Furthermore, the system perfor-

mance and ADC speed can be easily controlled by adjusting the 

compression ratio. 

 

 
Fig. 3: Block Diagram of the Proposed Spectrum Sensing Technique. 

 

First the input signal is passed through a noise pre-filter. Then the 

signal is applied to CS technique with different compression ratios. 

CS will reduce the number of samples needs to reconstruct the 

original signal at the receiver. De-noising filter will minimize the 

added noise of the received signal which leads achieving SNR 

gain and variance reduction. Consequently, the improvement will 

enhance the detection threshold estimation and improve the ROC 

curves of the energy detector. Enhancing ROC curves is because 

of the increment in probability of detection𝑃𝑑and the decrement in 

probability of false alarm  𝑃𝑓  and probability of missed detec-

tion 𝑃𝑚𝑑. 

6. Throughput calculatioins 

In order to compare between the performance of the proposed 

technique and the traditional energy detector, the achievable sens-

ing throughput is calculated.In order to evaluate cognitive radio 

networks under noise uncertainty is through sensing throughput 

calculations as mentioned in [24].According to [22], a Cognitive 

radio network has a frame structure with number of frames equal 
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to 𝑁as shown in the Fig.4. The achievable sensing throughput is 

function of sensing time 𝜏. 

 

 
Fig. 4: Frame Structure [6]. 

 

Two time slots, sensing time slot 𝜏 and data transmission slot (𝑇 −
𝜏) are shown on the frame structure [25]. Primary user could be 

absent or presented. In the absence of primary user, sensing 

throughput is calculated as below:  

 

𝐶𝑜 = 𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅𝑠) = 𝑙𝑜𝑔2(1 +
𝑃𝑠

𝑁𝑜
)                                      (21) 

 

Where𝐶𝑜 is the throughput of secondary network in the absence of 

the primary user,𝑆𝑁𝑅𝑠 = 𝑃𝑠 𝑁𝑜⁄  is signal to noise ratio of the sec-

ondary network where and 𝑃𝑠 is the received power of the second-

ary network. On the other hand, sensing throughput is calculated 

in the presence of the primary user from the equation below: 

 

𝐶1 = 𝑙𝑜𝑔2(1 +
𝑆𝑁𝑅𝑠

1+𝑆𝑁𝑅𝑝
) = 𝑙𝑜𝑔2(1 +

𝑃𝑠

𝑃𝑝+𝑁𝑜
)                               (22) 

 

Where 𝐶1 is the secondary network throughput when the primary 

user is present, and 𝑆𝑁𝑅𝑝 = 𝑃𝑝 𝑁𝑜⁄ is signal to noise ratio of the 

secondary network, where 𝑃𝑝is the interference power of the pri-

mary user. 

Obviously from equations (21) and (22), it is found that𝐶𝑜 > 𝐶1. 

For a given frequency band, the probability for which the primary 

user is present is defined as 𝑃(𝐻1) and the probability for which 

the primary user is absence is defined as 𝑃(𝐻𝑜) where:  

 

𝑃(𝐻𝑜) + 𝑃(𝐻1) = 1                                                                    (23) 

 

Now achievable sensing throughput can be calculated from the 

equation below: 

 

�̃�(𝜏) = 𝐶𝑜𝑃(𝐻𝑜) (1 −
𝜏

𝑇
) (1 − 𝑄(𝛼 + √𝜏𝑓𝑠𝛾))                         (24) 

 

Where𝛼 = √2𝛾 + 1𝑄−1(𝑃𝑑). In IEEE 802.22 WRAN [22], prob-

ability of detection is chosen where 𝑃𝑑 = 0.9 for 𝑆𝑁𝑅 = −20 𝑑𝐵, 

and the activity probability 𝑃(𝐻1) = 0.2 for the primary user. 

7. Simulation results 

In this section, a performance comparison between the proposed 

spectrum sensing technique and the traditional energy detector is 

presented. Simulations are performed using MATLAB R2014a. A 

frame of 8 bits is sent using BPSK modulation with bandwidth 

of  2 𝑀𝐻𝑧 . AWGN is added to a modulated signal for SNR 

equals −20 𝑑𝐵. Three test cases are discussed. The first case is 

intended to apply the de-noising techniques on the ordinary sam-

pled received signal in order to study the performance enhance-

ment of the energy detector. In the second case, the de-noising 

techniques are applied on the compressive sensing reconstructed 

received signal at different compression ratios. The effect on the 

performance of the energy detector is studied. In the third case, a 

simulation result of the proposed energy detector technique using 

an optimization compression ratio is introduced. The optimum 

compression ratio is determined using the Genetic Algorithm (GA) 

optimization tool. 

 

Case 1: Applying de-noising techniques on ordinary sampled sig-

nal 

In this part, both RLS and wavelet De-noising filters are applied 

on the received signal which is ordinary sampled at Nyquist rate to 

study the performance enhancement of the energy detector. The 

simulation results revealed that the de-noising techniques are, 

greatly, enhanced the performance of the energy detector. On the 

other hand, the energy detector based on RLS de-noising filter 

provided a much higher performance more than the energy detec-

tor based on wavelet de-noising filter and the traditional energy 

detector as shown in Fig.5 and Fig.6. 

 

 
Fig. 5: Comparison Between ROC Curves for the Proposed Energy Detec-

tors Based on De-Noising Filters and the Traditional Energy Detector 

Using Ordinary Sampling. 

 

 
Fig. 6: Comparison Between ROC Curves for the Proposed Energy Detec-

tors Based on De-Noising Filters and the Traditional Energy Detector 

Using Ordinary Sampling. 

 

In addition, the performance enhancement effect of the energy 

detector has greatly reflected on the throughput of the system. For 

a certain probability of detection  𝑃𝑑 = 0.9 ,  𝑇 = 100 𝑚𝑠 ,  𝜏 =
0.4 𝜇𝑠, and𝑆𝑁𝑅𝑝 = 100 , the calculated throughputsfor the tradi-

tional energy detector and the proposed energy detectors are listed 

in table 1. Throughput calculations show that after applying the 

wavelet and RLS de-noising filters, the throughputs are increased 

to 0.038and 0.15 bits/sec/Hz which are 3.166 and 12.5 times 

greater than the throughput of the traditional detector respectively. 

It is clear that the RLS de-noising filter provides the highest 

throughput as shown Fig.7.  
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Table 1: Throughput Calculations for the Proposed Energy Detectors 

Using Ordinary Sampling. 

  Pd  Pf τμs 
T 

ms 
SNRs SNRp 

Throughput 

bits/sec/Hz 

Traditional 
Energy 

Detector 

0.9 0.66 0.4 100 0.03 100 0.012 

Proposed 
detector 

based on 

wavelet de-
noising 

filter 

0.9 0.40 0.4 100 0.06 100 0.038 

Proposed 
detector 

based on 

RLS de-
noising 

filter 

0.9 0.012 0.4 100 0.13 100 0.15 

 

 
Fig. 7: Comparison between Throughputs for the Energy Detectors Based 

On De-Noising Filters and the Traditional Energy Detector Using Ordi-
nary Sampling. 

 

Case 2: Applying de-noising techniques on compressed signal 

using compressive sensing 

The De-noising techniques are applied on the received signal 

which is constructed by compressive sensing at the compression 

ratios 20%, 40%, 60%, and 80%. Fig. 8 through Fig.15 show the 

ROC curves of the proposed detector using compressive sensing 

compared to the energy detector using ordinary sampling. The 

simulation results indicate that as the compression ratio increase 

the ROC curves using CS approach the ROC curves using the 

ordinary sampling. For a probability of detection  Pd = 0.9, T =
100 ms ,  τ = 0.4 μs , and SNRp = 100 , the corresponding 

throughputs are calculated as shown in Fig.16. It is clear that the 

throughputs are lower than the optimal throughput achieved using 

ordinary sampling. But, it is worth noting that for compression 

ratios greater than 60%, the curves using CS become very close to 

the ROC curves using the ordinary sampling. 

 

 
Fig. 8: Comparison between ROC Curves at 20% Compression Ratio and 

the Traditional Energy Detector Using Ordinary Sampling. 

 

 
Fig. 9: Comparison between ROC Curves at 40% Compression Ratio and 
the Traditional Energy Detector Using Ordinary Sampling. 

 

 
Fig. 10: Comparison between ROC Curves at 60% Compression Ratio and 
the Traditional Energy Detector Using Ordinary Sampling. 
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Fig. 11: Comparison between ROC Curves at 80% Compression Ratio and 
the Traditional Energy Detector Using Ordinary Sampling. 

 

 
Fig. 12: Comparison between ROC Curves at 20% Compression Ratio and 
the Traditional Energy Detector Using Ordinary Sampling. 

 

 
Fig. 13: Comparison between ROC Curves at 40% Compression Ratio and 

the Traditional Energy Detector Using Ordinary Sampling. 

 

 
Fig. 14: Comparison between ROC at 60% Compression Ratio and the 
Traditional Energy Detector Using Ordinary Sampling. 

 

 
Fig. 15: Comparison between ROC Curves at 80% Compression Ratio and 

the Traditional Energy Detector Using Ordinary Sampling. 

 

 
Fig. 16: Throughput Calculations for Traditional Energy Detector and the 

Proposed Energy Detectors Using Compressive Sensing at Different 
Compression Ratios. 
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Table 2: Throughput Calculations for Traditional Energy Detector and the 

Proposed Energy Detectors Using Compressive Sensing at Different 

Compression Ratios (C/R). 

 
20% 

C/R 

40% 

C/R 

60% 

C/R 

80% 

C/R 

Nyquist 

Sampling 

Traditional Ener-

gy Detector 

0.0077 

 

0.0097 

 

0.0111 

 

0.0104 

 

0.012 

 
Proposed detector 

based on CS and 

wavelet de-
noising filter 

0.0336 

 

0.0372 

 

0.038 

 

0.038 

 
0.038 

Proposed detector 
based on CS and 

RLS de-noising 

filter 

0.09 

 
0.0912 0.0955 0.1474 

0.15 

 

 

Case 3: Proposed energy detector using optimized compression 

ratio 

In this section, the proposed energy detection technique the Genet-

ic Algorithm (GA) optimization tool in MATLAB [26]. The GA 

estimates the optimal compression ratio that introduces a mini-

mum least mean square error between the absolute values of ROC 

curves using ordinary sampling and the ROC curves using CS. 

The cost function (CF) to be minimized is written as follows:  

 

CF = √
1

N
∑ |Xoi − X̂ci|

2N
i=1                                                            (25) 

 

Where Xoi denotes the values of ROC curves using ordinary sam-

pling,X̂ci denotes the values of ROC curves using CS and N is the 

length of the Xoi or X̂civector. 

The GA optimization tool options are adjusted as listed in Table 3. 

The GA tool is run over the pre-assigned compression ratio range 

10% ≤ C/R ≤ 90%. The setting options of the GA optimization 

tool in MATLAB are adjusted as listed in table 3. The optimum 

compression ratio is obtained using only 91 GA iterations and is 

found to be C/R = 64%. The simulation results revealed that the 

ROC curves using CS at C/R = 64% are highly coincide with the 

ROC curves using ordinary sampling as shown in Fig.17 and 

Fig.18. 

 
Table3: The Setting Options of the GA Optimization Tool in MATLAB 
Used in the Simulation Process. 

Options =  

Population Type:  ‘doubleVector’ 

PopInitRange: [2x1 double] 
PopulationSize: 20 

CrossoverFraction: 0.8000 

ParetoFraction: [] 
MigrationDirection: ‘forward’ 

MigrationInterval: 20 

MigrationFraction: 0.2000 
Generations: 100 

TimeLimit: Inf 

FitnessLimit: -Inf 
StallGenLimit: 50 

StallTimerLimit: Inf 

TolFun: 1.000e-006 
TolCon: 1.000e-006 

InitialPopulation: [] 

InitialScores: [] 
InitalPenalty: 10 

PenaltyFactor: 100 

PlotInterval: 1 
CreationFcn: @gacreationunionform 

FintessScalingFcn: @fitscalinggrank 

SelectionFcn: @selectionstochunif 
CrossoverFcn: @crossoverscattered 

MutationFcn: {[1x1 function_handle]} [1] 

DistanceMeasureFcn: [] 
HybridFcn: [] 

 

 
Fig. 17: Comparison between ROC Curves at Optimized Compression 

Ratio (64%) and the Traditional Energy Detector Using Ordinary Sam-

pling. 

 

 
Fig. 18: Comparison between ROC Curves at Optimized Compression 

Ratio (64%) and the Traditional Energy Detector Using Ordinary Sam-
pling. 

8. Conclusions 

In this paper, efficient spectrum sensing technique based on ener-

gy detection, CS, and de-noising techniques are introduced. The 

simulation results revealed RLS de-noising filter provides much 

higher performance more than the energy detector based on wave-

let de-noising filter and the traditional energy detector. In addition, 

the performance-enhancement effect of the energy detector has 

greatly reflected on the throughput of the system. The throughput 

calculations show that after applying the Wavelet and RLS de-

noising filters are increased to 3.166 and 12.5 times greater than 

the throughput of the traditional detector respectively. Further-

more, simulation results indicate that the throughput is lower than 

the optimal throughput achieved using ordinary sampling. Howev-

er, it is worth noting that for compression ratios greater than 60%, 

the curves using CS become very close to the ROC curves using 

the ordinary sampling. Finally, a proposed energy detection tech-

nique using optimized compression ratio is introduced using Ge-

netic Algorithm (GA) optimization tool. The simulation results 

revealed that the ROC curves using CS at compression ratio equal 

to 64% are highly coinciding with the ROC curves using ordinary 

sampling. 
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