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Abstract

In this paper, we use Adomian decomposition method (ADM) for solving vector-host model by using

the alternate algorithm suggested by Biazar et. al [4]. Some of the first terms were generated and

plotted against time and compared our results with the regular Runge-Kutta numerical methods by

using Matlab ode45 function.
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1 Introduction

The vector-host model is a mathematical model (framework) for the spread of a disease that transmits

from human to another human throw another carrier (vector). To formulate this model we consider the

dynamics of the disease into two different populations, human population and vector population. We

assumed that the human population is divided into three different subgroups, susceptible sh(t), infected

(and infectious) ih(t) and recovered rh(t), and the vector population into two subgroups susceptible

sv(t) and infected iv(t). It is assumed that susceptible individuals acquire infection following contacts

with infected vectors at a per capita rate ab iv(t), where a is the per capita biting rate of vectors on

humans, and b is the transmission probability per bite per human (as the case for malaria, [6, 8]). The

per capita biting rate of vectors a is equal to the number of bites received per human from vectors due

to conservation of bites mechanism [5, 7]. Infected humans recover and acquire permanent immunity
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at an average rate β. Susceptible vectors are acquire leishmaniasis infection following contacts with

infected human at an average rate equal to ac ih(t), where a is the per capita biting rate, and c is the

transmission probability for vector infection. It is also assumed that there is no demographic effects

on the model. Then our model is given by

s′h = −ab sh iv

i′h = ab sh iv − β ih

r′h = β ih (1)

s′v = −ac sv ih

i′h = ac sv ih

with initial conditions:

sh(0) = N1, ih(0) = N2, rh(0) = N3, sv(0) = N4, iv(0) = N5.

2 Solving system (1) by Adomian decomposition

method (ADM)

Adomian decomposition method (ADM) (see [1, 2]), considers sh, ih, rh, sv and iv as the sums of

the following series:

sh =

∞∑
i=0

sih, ih =

∞∑
i=0

iih, rh =

∞∑
i=0

rih, sv =

∞∑
i=0

siv, iv =

∞∑
i=0

iiv

By applying inverse of the operator d(.)
dt , which is the integration operator

∫ t
0 (.)dt to each equation in

the system (1) we have

sh(t) = sh(t = 0)− a b

∫ t

0
sh(t) iv(t) dt

ih(t) = ih(t = 0) + a b

∫ t

0
(sh(t) iv(t)− β ih(t)) dt

rh(t) = rh(t = 0) + β

∫ t

0
ih(t) dt (2)

sv(t) = sv(t = 0)− a c

∫ t

0
sv(t) ih(t) dt

iv(t) = iv(t = 0) + a c

∫ t

0
sv(t) ih(t) dt
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Using the alternate method for computing Adomian polynomials suggested by Biazar et. al [4], and

substituting the initial conditions, we would have the following scheme

sh(t) = N1 − a b

∫ t

0

n∑
i=0

s
(i)
h (t) i(n−i)

v (t) dt

ih(t) = N2 + a b

∫ t

0

n∑
i=0

(s
(i)
h (t) i(n−i)

v (t)− β i
(n)
h (t)) dt

rh(t) = N3 + β

∫ t

0
i
(n)
h (t) dt (3)

sv(t) = N4 − a c

∫ t

0

n∑
i=0

s(i)v (t) i
(n−i)
h (t) dt

iv(t) = N5 + a c

∫ t

0

n∑
i=0

s(i)v (t) i
(n−i)
h (t) dt

From the above method we can calculate some first few terms

s
(1)
h = −a bN1N5 t

i
(1)
h = (a bN1N5 − β N2) t

r
(1)
h = β N2 t

s(1)v = −a cN4N2 t

i
(1)
h = a cN4N2 t

s
(2)
h = −1

2
a b

[
N1(a cN2N4)− a bN1N

2
5

]
t2

i
(2)
h =

1

2
a b

[
N1(a cN2N4)− a bN1N

2
5 − β(a bN1N5 − β N2)

]
t2

r
(2)
h =

1

2
β
[
a bN1N5 − β N2

]
t2

s(2)v = −1

2
a c

[
N4(a bN1N5 − β N2)− a cN2

2 N4

]
t2

i(2)v =
1

2
a c

[
N4(a bN1N5 − β N2)− a cN2

2 N4

]
t2

...
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3 Convergence of the method

Since after the first step, applying the inverse operator
∫ t
0 (.)dt, we drive a system of Volterra

integral equations of second kind, and the convergence of these systems is discussed in [3].

4 Numerical simulation and discussion

In this section we give numerical simulation for our model using (ADM) and the regular

Runge-Kutta numerical method by applying Matlabr ode45 function, and then we compare

between the results.

The parameters values used are in Table 1.

parameter parameter description value

N1 Initial value of population sh(t), susceptible individuals 100

N2 Initial value of population ih(t), infected individuals 6

N3 Initial value of population rh(t), recovered individuals 1

N4 Initial value of population sv(t), susceptible vectors 80

N5 Initial value of population iv(t), infected vectors 12

a Biting rate of vectors 0.01

b Progression rate of the disease in the vector 0.2

c Progression rate of the disease in human 0.2

β Human recovery rate 0.3

Table 1: Parameter values for the model simulation

We calculate three and four terms approximations for the variables are calculated and presented

below.

Three terms approximation:

s
(3)
h = 100− 2.4 t− 0.0672 t2 − 0.0007 t3

i
(3)
h = 6− 0.6 t− 0.0228 t2 + 0.003 t3

r
(3)
h = 1 + 1.8 t+ 0.09 t2 − 0.0023 t3

s(3)v = 80− 0.96 t− 0.0422 t2 + 0.0018 t3

i
(3)
h = 12 + 0.96 t+ 0.0422 t2 − 0.0018 t3
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Four terms approximation:

s
(4)
h = 100− 2.4 t− 0.0672 t2 − 0.0007 t3 + 0.0002 t4

i
(4)
h = 6− 0.6 t− 0.0228 t2 + 0.003 t3 − 0.0004 t4

r
(4)
h = 1 + 1.8 t+ 0.09 t2 − 0.0023 t3 + 0.0002 t4

s(4)v = 80− 0.96 t− 0.0422 t2 + 0.0018 t3 − 0.0001 t4

i
(4)
h = 12 + 0.96 t+ 0.0422 t2 − 0.0018 t3 + 0.0001 t4
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Figure 1: Simulation results using three terms approximation

We noticed that the three terms approximation of Adomian decomposition method is very similar

to the simulation results generated using Matlabr Ode45 function, which is reasonable compared to

reality because it is clear that the number of susceptible (humans and vectors) decrease as the

number of infected (humans and vectors) increase, and the number of recovered humans increases, as

seen from Figures 1,3. However, as seen from Figure 2, using four terms approximation we found

that the number of susceptible humans decrease first and then increase again, which coincide with

reality, and this case needs further investigation, and it may happens due to the use of alternate

method for computing Adomian polynomials.
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Figure 2: Simulation results using four terms approximation
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Figure 3: Simulation results using ode45
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