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Abstract

In this article, the results of two-dimensional reduced differential transform method is extended to three-dimensional case for solving three
dimensional Volterra integral equation. Using the described method, the exact solution can be obtained after a few number of iterations.
Moreover, examples on both linear and nonlinear Volterra integral equation are carried out to illustrate the efficiency and the accuracy of the
presented method.
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1. Introduction

Many problems in many branches of science such as engineering,
physics and other disciplines can be modeled as a Volterra integral
equation of the second kind. In literature, different methods have
been used to solve one and two-dimensional Volterra integral equa-
tion see for example[2, 7, 10, 11, 14] and the references in[3, 13].
In the recent years, many researchers studied Volterra integral
equation using the differential transform method (DTM)[1, 5, 6, 9].
For three-dimensional integral equations, in [4] the author used the
three-dimensional differential transform method and authors in [8]
applied the block-pulse functions methods on three-dimensional
nonlinear mixed Volterra-Fredholm integral equation. Recently, the
differential transform method is modified to the so-called Reduced
Differential Transform Method to solve Volterra integral equation[1].

The aim of the presented article is to solve three-dimensional
Volterra integral equation using the reduced differential transform
method. So, we consider the 3-dimensional Volterra integral
equation of the form:

u(x,y, t) = f (x,y, t)+
t∫

t0

y∫
y0

x∫
x0

K(x,y, t,ω,υ ,τ)[u(ω,υ ,τ)]mdωdυdτ, (1)

where u(x,y, t) is the unknown function, m is a positive integer and the
functions Kand f are analytic in the domain of interest.

2. Reduced differential transform method

In this section, we present basic definitions and operations of the
reduced differential transform method, for more details see [12]and
the references therein.
Now, assume that the function of three variables w(x,y, t) can be writ-
ten as a multiple of two functions as follows: w(x,y, t)=F(x,y)G(t),
then w(x,y, t) can be represented as:

w(x,y, t) =
∞

∑
i=0

∞

∑
l=0

F(i, j)xiy j
∞

∑
k=0

G(k)tk =
∞

∑
i=0

∞

∑
l=0

∞

∑
k=0

W (i, j)xiy jtk, (2)

where the function W (i, j) = F(i, j)G(k) is called the spectrum of
w(x,y, t)

Definition 2.1. Let w(x,y, t) be an analytic function in the domain of interest,
the reduced differential transform function is

Wk(x,y) =
1
k!

[
∂ k

∂ tk w(x,y, t)
]

t=t0

. (3)

Definition 2.2. The differential inverse reduced transform of Wk(x,y) is
defined by

w(x,y, t) =
∞

∑
k=0

Wk(x,y)(t− t0)k =
∞

∑
k=0

1
k!

[
∂ k

∂ tk w(x,y, t)
]

t=t0

(t− t0)k. (4)

In fact, the function w(x,y, t) can be written in a finite series as
follows

wn(x,y, t) =
n

∑
k=0

Wk(x,y)(t− t0)k +Rn(x,y, t), (5)

the tail function Rn(x,y, t)is negligibly small.

Table 1: Basic operations of the reduced differential transofrm method

Original function Reduced differential transformed

w(x,y, t) = u(x,y, t)v(x,y, t) Wk(x,y) =
k
∑
j=0

U j(x,y)Vk− j(x,y)

w(x,y, t) = αu(x,y, t)±βv(x,y, t) Wk(x,y) = αUk(x,y)±βVk(x,y)
∂ n

∂ tn u(x,y, t) (k+n)!
k! Uk+n(x,y)

∂ m+n+s

∂xm∂yn∂ ts u(x,y, t) (k+s)!
k!

∂ m+n

∂xm∂yn Uk+s(x,y)

sin(αx+βy+ωt) ωk

k! sin( πk
2! +αx+βy)

cos(αx+βy+ωt) ωk

k! cos( πk
2! +αx+βy)

eαt αk

k!

xmyntq
{

xmyn, k = q
0, otherwise
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3. Main results

Suppose that the functions Wk(x,y), Uk(x,y), Gk(x,y) and Vk(x,y)
are the reduced differential transform functions of w(x,y, t), u(x,y, t),
g(x,y, t) and v(x,y, t) respectively.

Theorem 3.1. If w(x,y, t) =
t∫
0

y∫
0

x∫
0
u(z,ω,τ)dzdωdτ then

Wk(x,y) =
1
k

y∫
0

x∫
0

Uk−1(ω,τ)dωdτ. (6)

Proof. The kth partial derivative of the function w(x,y, t) is
∂ k

∂ tk w(x,y, t) =
y∫
0

x∫
0

∂ k−1

∂ tk−1 u(z,ω, t)dzdω. The result can be easily de-

duced from equation (3).

Theorem 3.2. Let w(x,y, t) =
t∫
0

y∫
0

x∫
0
u(z,ω,τ)v(x,y, t)dzdωdτ then

The reduced differential transform function of w(x,y, t) is

Wk(x,y) =
1
k

y∫
0

x∫
0

k−1

∑
r=0

Ur(ω,τ)Vk−r−1(ω,τ)dωdτ. (7)

Proof. From Leibnitz formula the kth partial derivative of w(x,y, t)
is

y∫
0

x∫
0

k−1

∑
r=0

(
k−1

r

)
∂ r

∂ tr u(ω,τ, t)
∂ k−r−1

∂ tk−r−1 v(ω,τ, t)dωdτ,

table (1) and equation (3) yield the following equation

∂ k

∂ tk w|t=0 =

y∫
0

x∫
0

k−1

∑
r=0

(
k−1

r

)
r!(k− r−1)!UrVk−r−1dωdτ

= (k−1)!

y∫
0

x∫
0

k−1

∑
r=0

Ur(ω,τ)Vk−r−1(ω,τ)dωdτ

Theorem 3.3. Let w(x,y, t) = h(x,y, t)
t∫
0

y∫
0

x∫
0
u(z,ω,τ)dzdωdτ , then

the reduced differential transform of w(x,y, t) is

Wk(x,y) =
k−1

∑
r=0

1
k− r

Hr(x,y)

y∫
0

x∫
0

Uk−r−1(ω,τ)dωdτ. (8)

Proof. The kth partial derivative of w(x,y, t) with respect to t is

∂ k

∂ tk w(x,y, t) =
k

∑
r=0

(
k
r

)
∂ r

∂ tr h(x,y, t)

y∫
0

x∫
0

∂ k−r−1

∂ tk−r−1 u(ω,τ, t)dωdτ.

On the other hand,
[

∂ k−r

∂ tk−r

t∫
0

y∫
0

x∫
0
u(z,ω,τ)dzdωdτ

]
t=0

= 0 for k = r.

Thus, from equation (3) we have
[

∂ k

∂ tk w(x,y, t)
]

t=0
= k!Wk(x,y) and

hence,[
∂ k

∂ tk w(x,y, t)
]
=

k−1
∑

r=0

(k
r
)
r!(k−r−1)!Hr(x,y)

y∫
0

x∫
0
Uk−r−1(ω,τ)dωdτ .

Theorem 3.4. If w(x,y, t) =
t∫
0

y∫
0

x∫
0

u(z,ω,τ)
v(z,ω,τ)

dzdωdτ , then

Uk(x,y) =
k

∑
r=0

(r+1)
∂ 2Wr+1(x,y)

∂x∂y
Vk−r(x,y). (9)

Proof. First write the function u(x,y, t) = ∂ 3w(x,y,t)
∂x∂y∂ t v(x,y, t) then we

differentiate partially k times with respect to t to get the following
equation

∂ k

∂ tk u(x,y, t) =
k−1

∑
r=0

(
k
r

)
∂ r+3

∂x∂y∂ tr+1 w(x,y, t)
∂ k−r

∂ tk−r v(ω,τ, t).

Therefore, from equation (3) we have

k!Uk(x,y) =
k
∑

r=0
(r+1)!(k− r)! ∂ 2Wr+1(x,y)

∂x∂y Vk−r(x,y) .

Theorem 3.5. If w(x,y, t) = 1
v(x,y,τ)

t∫
0

y∫
0

x∫
0
u(z,ω,τ)dzdωdτ then

k

∑
r=0

Wr(x,y)Vk−r(x,y) =
1
k

y∫
0

x∫
0

Uk−r(ω,τ)dωdτ. (10)

Proof. Write the given integral equation as

w(x,y, t)v(x,y,τ) =
t∫
0

y∫
0

x∫
0

u(z,ω,τ)dzdωdτ

So, equation (10) can be easily obtained from equation (6) and table
(1).

4. Numerical examples

In this section, we apply RDTM method on several examples of
linear and nonlinear Volterra integral equation. Then we close this
section by an example which is solved in[4] by DTM method and
present the table of absolute error at some particular points to com-
pare between the two methods.

Example 4.1. Consider the integral equation

u(x,y, t) = xcos t− x3y3

9 sin t +
t∫
0

y∫
0

x∫
zω2

0
u(z,ω,τ)dzdωdτ.

The exact solution is u(x,y, t) = xcos t. First, let
f (x,y, t) = xcos t− x3y3

9 sin t and v(x,y, t) = xy2.

Elementary calculations lead to F0(x,y) = x, F1(x,y) = − x3y3

9 ,

F2(x,y) = −x
2 , F3(x,y) =

x3y3

3!9 , ... and V0(x,y) = xy2, Vk(x,y) = 0
for k ≥ 1. Also, U0(x,y) = F0(x,y) = x. Now, from theorem (3.2) ,

Uk(x,y) = Fk(x,y)+ 1
k

y∫
0

x∫
0

k−1
∑

r=0
Ur(ω,τ)Vk−r−1(ω,τ)dωdτ,k ≥ 1.

So, easy calculation on the last integral equation will produce the
following formula:

Uk(x,y) =

{
(−1)kx

k! , k is even
0, k is odd

.

Therefore,

u(x,y, t) =
∞

∑
k=0

Uk(x,y)t
k = x

∞

∑
k=0

(−1)kt2k

(2k)!
= xcos t.

Example 4.2. Consider the nonlinear integral equation

u(x,y, t) = xyt− (xyt)3

27
+

t∫
0

y∫
0

x∫
0

u2(z,ω,τ)dzdωdτ.

The exact solution to this integral equation is u(x,y, t) = xyt.
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It is clear that U0(x,y) = Fk(x,y) = 0, k 6= 1 and F1(x,y) = xy. Also,
from theorem(3.2) we have

Uk(x,y) = Fk(x,y)+
1
k

y∫
0

x∫
0

k−1

∑
r=0

Ur(ω,τ)Uk−r−1(ω,τ)dωdτ,k ≥ 1.

Hence U1(x,y) = xy and Uk(x,y) = 0 for k 6= 1 .

Example 4.3. Consider the following integral equation
u(x,y, t) = g(x,y, t)+w(x,y, t) where v(x,y, t) = 1+ cos t and

w(x,y, t) =

t∫
0

y∫
0

x∫
0

u(z,ω,τ)

v(z,ω,τ)
dzdωdτ, g(x,y, t)

= (x+ y)(1+ cos t)− x2y+ xy2

2

It is obvious that U0(x,y) = G0(x,y) = 2(x+ y). Also, from table
(1), G1(x,y) =− x2y+xy2

2 , and for k ≥ 2

Gk(x,y) =
{

(−1)k+1(x+ y), k even
0 k odd

.

On the other hand, V0(x,y) = 2 and for k ≥ 1,

Vk(x,y) =
{ 1

k! cos( kπ

2 ), k even
0, k odd

Using (9), W1(x,y) =
x2y+xy2

2 , W2(x,y) = 0. But since
Uk(x,y) = Gk(x,y)+Wk(x,y) we have for k ≥ 1,

Uk(x,y) =

{
−(x+y)

k! , k even
0 k odd

Therefore,

u(x,y, t) = 2(x+ y)+
−(x+ y)

2
t2 +

(x+ y)
4!

t4 + · · ·

= (x+ y)[1+(1+
−1
2

t2 +
1
4!

t4 + · · ·)]

= (x+ y)(1+ cos t).

Example 4.4. Consider the following integral equation

u(x,y, t) = g(x,y, t)+
t∫
0

y∫
0

x∫
0
u(z,ω,τ)dzdωdτ , where 0 ≤ x,y, t ≤ 1

and g(x,y, t) = ex+y +(et − 1)(ex + ey− 1). The exact solution is
u(x,y, t) = ex+y+t .

It is clear that U0(x,y) = G0(x,y) = ex+y. Also, from table (1) ,
Gk(x,y) = 1

k! (e
x + ey−1). Theorem (3.1) implies

Uk(x,y) = Gk(x,y)+
1
k

y∫
0

x∫
0

Uk−1(ω,τ)dωdτ, k = 1,2, ... (11)

Using equation (11) recursively one can obtain the general formula

of Uk(x,y) = ex+y

k! and hence u(x,y, t) =
∞

∑
k=0

ex+y

k! tk = ex+y+t .

The exact solution and absolute error of the iterative solutions
u2(x,y, t) and u3(x,y, t) obtained by RDTM at some test points
(x,y, t) are calculated in tables(2) and (3). Comparing the results
obtained by RDTM method with those obtained by DTM method
(see example 3.3 [4]), we conclude that RDTM minimizes the num-
ber of iterations to reach the exact solution. Also,the approximated
solution approaches rabidly to the exact solution.

Table 2: The Exact Solution

x y t Exact Solution
0.1 0.1 0.1 1.3498588076
0.01 0.1 0.1 1.2336780600
0.01 0.01 0.1 1.1274968516
0.01 0.01 0.01 1.0304545340

0.001 0.01 0.01 1.0212220516
0.001 0.001 0.01 1.0120722889
0.001 0.001 0.001 1.0030045045

Table 3: The Absolute Error

x y t |uexact −u2| |uexact −u3|
0.1 0.1 0.1 2.08759809×10−4 5.19268266×10−6

0.01 0.1 0.1 1.90792099×10−4 4.7457546×10−6

0.01 0.01 0.1 1.74370849×10−4 4.3372931×10−6

0.01 0.01 0.01 1.7045949×10−7 4.2594×10−10

0.001 0.01 0.01 1.6893224×10−7 4.2212×10−10

0.001 0.001 0.01 1.6741867×10−7 4.1834×10−10

0.001 0.001 0.001 1.6704×10−10 4×10−15

5. Conclusion

In this paper, the three dimensional linear and nonlinear integral
equations are solved by using RDTM. It is worth noting that RDTM
does not require complex computational work like DTM. It can be
easily implemented, its convergence is rapid and its approximation
is accurate. In general, it can be concluded that RDTM is a powerful
tool for solving many linear and nonlinear three dimensional integral
equations.
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