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Abstract

The time fractional heat conduction in an infinite plate of finite thickness, when both faces are subjected to boundary
conditions of second kind, has been studied. The time fractional heat conduction equation is used, when attempting
to describe transport process with long memory, where the rate of heat conduction is inconsistent with the classical
Brownian motion. The stability and convergence of this numerical scheme has been discussed and observed that
the solution is unconditionally stable. The whole analysis is presented in dimensionless form. A numerical example
of particular interest has been studied and discussed in details.
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1. Introduction

The fractional calculus is a name for the theory of integral and derivatives of arbitrary orders, which unify and
generalize the notions of integer-order differentiation and n-fold integration. In recent years, fractional calculus has
been taken by Scientist and Engineers and applied in an increasing numbers of fields, namely in the field of material
and mechanics, signal processing, anomalous diffusion, biological system, finance, hydrology and many others see
[18],[12],[24],[27],[21],[11],[1].

Fractional sub-diffusion equation is a class of anomalous diffusive system, which is obtained from the classical
heat conduction equation by replacing the first orders time derivative to a fractional derivative of order α with
0 < α < 1 (in Riemann-Liouville or Caputo sense). It is a known fact that the anomalous diffusion is characterized
by a diffusion constant and the mean square displacement of diffusing species in the form

〈x2(t)〉 ∼ tα, t→∞

where, α(0 < α < 1) is the anomalous diffusion exponent.
Numerical approaches to different types of fractional diffusion models have been increasingly appearing in

literature. Meerchaert [13], considered the stochastic solution of space-time fractional diffusion equation. Huang
and Liu [6], considered the time fractional diffusion equation in whole space and also in half space. Yuste and
Acedo [26], and Yuste [25], presented an explicit scheme and weighted average finite difference methods for the
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fractional diffusion equation and analyzed these two schemes stability by von Neumann method. Zhuang and
Liu [30], approximated the time fractional diffusion equation by implicit difference method. For the fractional
sub-diffusion equation Chen and Liu [3], constructed the difference scheme based on Grunwald-Letnikov formula
and showed the stability and convergence of the difference scheme using the Fourier method. Zhuang et al. [31],
introduced a new way for solving sub-diffusion equation by integration of the original equation on the both sides to
obtain an implicit numerical method. Stability and convergence of the scheme were proved by the energy method.
Murio [14] constructed implicit finite difference approximation for time fractional diffusion equations but in showing
stability of the method by Fourier method he made some flaw. Ding and Zhang [4] showed the stability of implicit
finite difference approximation for time fractional diffusion equations. Chen et al. [2] constructed finite difference
method for the fractional reaction-sub-diffusion equation. Zhang [28] considered the unconditionally stable finite
difference method for fractional partial differential equation. Singh et al. [23] solved the bioheat equations by finite
difference method and homotopy perturbation method.

The work mentioned above are dealing with Dirichlet boundary conditions, where no boundary discretization
errors are involved. However, for Neumann boundary condition (i.e boundary condition of second kind), the
discretization of boundary conditions must dealt with carefully to match global accuracy. Langlands and Henry [9]
developed an implicit difference scheme with convergence order o(τ + h2) based on L1 approximation for Riemann-
Liouville fractional derivative and numerically verified the unconditional stability of difference scheme but without
global convergence analysis. Recently, Zhao and Sun [29] proposed a Box-type scheme for solving a class of fractional
sub-diffusion equation with homogeneous Neumann boundary conditions. Since many application problems in
science and engineering involve Neumann boundary conditions [9] [20],[15], such as zero flow or specified flow
flux condition. Thus, it is very desirable to use high-order algorithms for efficient computations of the numerical
solution of this kind of problem. This motivates us to consider the implicit finite difference approximation for
spatial discretization.

The main purpose of this paper is to construct a mathematical model for time fractional heat conduction in
an infinite plate and discuss the anomalous diffusion, sub-diffusion and also discuss the effect of limiting value of
time fractional constant α by taking a particular example. The rest of the paper is organized as follows. Section
1 deals fundamental of fractional calculus, time fractional heat conduction equation and a mathematical model
of a boundary value problem governing the process of time fractional heat conduction in an infinite plate of finite
thickness whose both faces are subjected to boundary conditions of second kind. An implicit finite difference scheme
is given in section 2. Stability and convergence of the scheme is given in section 3. Section 4 contains numerical
computation and discussion. The conclusion and future research plan is given in section 5.

1.1. Fundamental of fractional calculus

The Grunwald Letnikov fractional derivative [18] aD
α
t g(t), of order α > 0, of a function g(t) is defined as

aD
α
t g(t) =

m∑
k=0

gk(a)(t− a)(−α+k)

Γ(−α+ k + 1)
+

1

Γ(−α+ k + 1)

t∫
a

(t− τ)m−αgm+1(τ)dτ (1)

This definition of fractional derivative is defined under the assumption that functions are m+1 - times continuously
differentiable in the closed interval [ a, t ] where, m is an integer number satisfying the condition m > α− 1. But
such type of functions are very narrow.

Let [a, t] be a finite interval on the real axis <. The Riemann-Liouville (R-L) fractional derivative [18] RLa Dα
t g(t),

of order α > 0, of a function g(t) is defined by

RL
a Dα

t g(t) =
dn

dtn
[

1

Γ(n− α)
]

t∫
a

(t− τ)n−α−1g(τ)dτ, (n− 1 < α ≤ n) (2)

The Riemann-Liouville approach have played an important role in the development of theory of fractional calculus
due to their applications in pure mathematics. However, R-L approach lead to initial conditions containing the
limit values at the lower terminal t = a as

lim
t→a

RL
a Dα−j

t g(t) = c̄j , j = 1, 2, ...n.

where, c̄j are given constants. The above initial value problems with such initial conditions can be successfully
solved mathematically but their solutions have no known physical interpretation due to which they are useless.
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The Caputo fractional derivative [18] CaD
α
t g(t), of order α, of a function g(t) is defined as

C
aD

α
t g(t) =

1

Γ(α− n)

t∫
a

(t− τ)n−α−1gn(τ)dτ, n− 1 < α ≤ n (3)

Under natural conditions on the function g(t), for α → n the Caputo derivative becomes a conventional n-th
derivative of the function g(t). The main advantage of Caputo’s approach is that the initial conditions for fractional
differential equations with Caputo derivatives takes on the same form as for integer-order differential equations, i.e.
contain the limit values of integer-order derivatives of unknown functions at the lower terminal t = a, due to this
in present study we take Caputo fractional derivative.

1.2. Time fractional heat conduction equation

The classical theory of heat conduction is based on Fourier law, ~q = − 5 T , relating to the heat flux vector
(~q) to the temperature gradient (5T ), where, thermal conductivity K is a geometry-independent coefficient and
mainly depends on the composition and structure of the material and the temperature. In many one dimensional
systems with total momentum conservation, the heat conduction equation does not obey the Fourier law and
heat conductivity depends on the system size [8]. Such size dependent thermal conductivity has been observed in
theoretical models, such as the harmonic chains [22], the FPU-β model [10] and the hard point gas model [5].

The heat conduction equation is a combination of conservation equation of energy and conduction law. The
energy conservation is expressed locally by

−5 ~q(t) = ρcb
∂T

∂t
(4)

where, cb, is the specific heat capacity at constant pressure and ρ, is the density. The theory of heat conduction
proposed by Norwood [16], the corresponding generalization of Fourier law,

~q(t) = −K
t∫

0

a(t− τ)5 T (τ)dτ (5)

where, a(t − τ) is the kernel. The time non local dependence between the heat flux vector and the temperature
gradient with long tale power kernel [19],

~q(t) =
−K
Γ(α)

t∫
0

(t− τ)α−1 ∂ 5 T (τ)

∂t
dτ, 0 < α ≤ 1 (6)

Considering the definition of Caputo fractional derivative for 0 < α ≤ 1

c
0D

α
t g(t) =

1

Γ(1− α)

t∫
0

g1(τ)

(t− τ)α
dτ, 0 < α ≤ 1 (7)

Now equation (6) becomes,

~q(t) = −K(c0D
α−1
t 5 T ) (8)

In uni-dimensional case, the gradient of temperature in orthogonal curvilinear coordinate system is given by [7]

5T = x
1

h1

∂T

∂x
(9)

here,the coefficients h1 is called the scale factors and can be evaluated by,

h2
1 = 1
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The heat flux vector ~q becomes,

~q = −K(c0D
1−α
t x

1

h1

∂T

∂x
) (10)

Therefore divergence of heat flux vector ~q in orthogonal curvilinear coordinate system is given by

5~q = − 1

h1
[
∂

∂x
K(c0D

1−α
t

1

h1

∂T

∂x
) (11)

Then, the fractional heat conduction equation in orthogonal curvilinear coordinate system is given by substituting
the result of Eq. (11) into Eq. (4) i.e.

1

h1
[
∂

∂x
K(c0D

1−α
t

1

h1

∂T

∂x
)] = ρcb

∂T

∂t

1.3. Mathematical model of heat conduction in an infinite plate of finite thickness

The transport process in an infinite plate of finite thickness 2R, with the long memory where, the rate of heat
conduction in the body is inconsistent with the classical Brownian motion model, is considered. At initial instant,
the temperature of the body is a function of space coordinate and the faces are subjected to boundary condition
of second kind. The mathematical model describing this anomalous heat conduction in presence of internal heat
source, in dimensionless form can be written as:

∂αθ

∂Fα0
=
∂2θ

∂x2
+ P0(x, F0) (12)

(−1)j
∂θ

∂x
= kij (F0), x = (−1)j , j = 1, 2 (13)

θ(x, 0) = f(x), F0 > 0 (14)

Nomenclature, dimensional variable and similarity criteria

aq thermal diffusivity (m2s−1) f(x) dimensionless initial temperature

b1 time dependent coefficient (s−1K) F0 Fourier number,
aqt
R2

cb specific heat capacity (J/kg K) ki(F0) Kirpichev number, q(τ)R
K(Tc−T0)

aD
α
t Grunwald Letnikove fractional derivative ki1(F0) dimensionless heat flux at boundary x=-1

RL
a Dα

t Riemann-Liouville fractional derivative ki2(F0) dimensionless heat flux at boundary x= 1
C
aD

α
t Caputo fractional derivative P0 Pomerantsev number, Q(x,τ)R2

K(Tc−T0)

g(t) a continuous differentiable function of t Pd Predvoditelev number, b1R
2

aq∆T

h1 scale factor x dimensionless spatial coordinate, r
R

K thermal conductivity (W/m K) θ dimensionless temperature, T−T0

Tc−T0

k temporal grid size q(t) heat flux (W/ m2)
Q heat source (J) 2R thickness of the infinite plate (m)
T temperature (K) T0 initial temperature (K)
Tc ambient temperature (K) 5T temperature gradient (K/m)
∆x spatial grid size (= h) α order of fractional derivative in (n-1, n]
ρ density (kg m−3) a, t lower and upper terminals of fractional order

2. Implicit finite difference scheme

To establish the numerical approximation scheme, let ∆x = h = 2
X > 0 and k = 1

M be the grid size in space and
time direction respectively. The grid points in the space interval [−1, 1] are the numbers xi = ih, i = 1, 2, 3...p and
grid points in the time interval [0, F0] are labelled F0n = nk, n = 1, 2, ..,m. The values of the functions θ and f
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at grid points are denoted by θni = θ(xi, F0n) and fi = f(xi), respectively. In the differential Eq. (12), we have
adopted a symmetric second difference quotient in space at level F0 = F0n+1 for approximating the second order
space derivative. The time fractional derivative term can be approximated by the following scheme:

∂αθ(xi, F0n+1
)

∂Fα0
=

1

Γ(1− α)

F0n+1∫
0

∂θ(xi, s)

∂F0
(F0n+1 − s)−αds

=
1

Γ(1− α)

n∑
j=0

(j+1)k∫
jk

[
θj+1
i − θji
k

] {(n+ 1)k − s}−α ds

=
1

Γ(1− α)

1

(1− α)

n∑
j=0

([
θj+1
i − θji
k

][(n− j + 1)1−α − (n− j)1−α])k1−α

=
1

Γ(1− α)

1

(1− α)

1

kα
(θj+1
i − θji ) +

1

Γ(1− α)

1

(1− α)

1

kα

n∑
j=1

(θj+1
i − θji )[(n− j + 1)1−α − (n− j)1−α]

By taking σα,k = 1
Γ(1−α)

1
(1−α)

1
kα and shifting indices wαj = (j)1−α − (j − 1)1−α, and define

Lαh,kθ(xi,F0n+1
) = σα,k

n∑
j=0

wαj (θn+1−j
i − θn−ji )

We have,

|
∂αθ(xi, F0n+1

)

∂Fα0
− Lαh,kθ(xi,F0n+1

)|

≤ 1

(1− α)

n∑
j=0

F0j+1∫
F0j

|∂θ(xi, ξ)
∂ξ

−
θ(xi, F0j+1)− θ(xi, F0j )

k
| dξ

(F0n+1
− ξ)α

≤ C1

Γ(1− α)
k

n∑
j=0

F0j+1∫
F0j

dξ

(F0n+1
− ξ)α

≤ C1

Γ(1− α)
k

F0j+1∫
0

dξ

(F0n+1
− ξ)α

|
∂αθ(xi, F0n+1)

∂Fα0
− Lαh,kθ(xi,F0n+1

)| ≤ C̄1k (15)

where, C1 and C̄1 are constants.
On using finite central difference formula and approximating derivatives at x0 and xn, the differential Eqs.

(12)-(14), reduces in the vector-matrix form as follows:

AΘ1 = Θ̄0 + P 1 (16)
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AΘn+1 = c1Θ̄n + c2Θ̄n−1 + ............+ cnΘ̄1 + dn+1Θ̄0 + Pn, n ≥ 1 (17)

Θ0 = f (18)

where,

Θ̄n = Θn (σα,k)1×1

Θn =
(
θn1 θn2 θn3 . . . . θnp−2 θnp−1

)t

A =



a1 −38r1 9r1 0 . . . 0
−r b −r 0 . . . 0
0 −r b −r . . . 0

0 . . . −r b −r 0
0 . . . 0 −r b −r
0 . . . 0 9r1 −38r1 a1


(p−1)×(p−1)

Pn =
(
Pn1 + 20hki,1r1 Pn2 Pn3 . . . . Pnp−3 Pnp−2 Pnp−1 + 20hki,2r1

)t
f =

(
f(x1) f(x2) f(x3) . . . . f(xp−3) f(xp−2) f(xp−1)

)t
cj = (wαj − wαj+1), dn = wαn , a1 = (σα,k + 29r1), b = (σα,k + 2r), r1 = 1

21h2 , r = 1
h2 and Xt be the transpose of

matrix X.

From Eqs. (16)-(18) we observe that at each time step, we get a triangular system of linear equations which
utilize all the history of the computed solution up to that time. In present analysis, Mathematical software MATLAB
7.0 has been used to obtain dimensionless temperature Θn.

3. Stability and convergence

In this section we will analyze the stability and convergence of the implicit finite difference scheme for time fractional
heat conduction equation. From Eqs. (16)-(18), and by using the property of the function g(x) = x1−α, (1 ≤ x)
and

1 = wα1 > wα2 > wα3 > wα4 > ..... −→ 0

we have the following,

n∑
j=1

cj = 1− wαn+1

∞∑
j=1

cj = 1, 1− 21−α > 22−α − 31−α − 1 = c1 > c2 > c3.... −→ 0

• Matrix A is strictly diagonally dominant with positive diagonal term and non positive off-diagonal terms.
Hence the Eqs. (16)-(18) can be solved.

• The solution θni (i = 1, 2, 3....p− 1;n = 1, 2, 3...m) possess non negativity, if θn0 is non negative.

• Solution θji is conservative, i.e
∞∑

i=−∞
|θ0
i | <∞ =⇒

∞∑
i=−∞

|θji | =
∞∑

i=−∞
|θ0
i |, j ∈ ℵ
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Now we suppose
˜
θji is the approximate solution of Eqs. (16)-(18), then the error εji =

˜
θji − θ

j
i satisfies,

AE1 = Ē0

AEn+1 = c1Ē
n + c2Ē

n−1 + c3Ē
n−2 + ............+ cnĒ

1 + dn+1Ē
0, n ≥ 1

where, Ēn = En (σα,k)1×1

and En =
(
εn1 εn2 εn3 . . . . εnp−2 εnp−1

)t
.

Hence, by the mathematical induction following result can be proved.

Theorem 3.1 ||En||∞ ≤ ||E0||∞

Proof : For n=1,

−rε1i−1 + (σα,k + 2r)ε1i − rε1i+1 = σα,kε
0
i

Let |ε1l | = max︸︷︷︸
1≤i≤p−1

|ε1i | then we have

|ε1l | ≤ −r|ε1l−1|+ (σα,k + 2r)|ε1l | − r|ε1l+1|

≤ | − rε1l−1 + (σα,k + 2r)ε1l − rε1l+1|

= |σα,kε0l |

||E1||∞ ≤ ||E0||∞

Therefore, ||E1||∞ ≤ ||E0||∞.
Suppose that ||Ej ||∞ ≤ ||E0||∞, j= 1,2,3....n. Let |εn+1

l | = max︸︷︷︸
1≤i≤p−1

|εn+1
i |, then we also have,

|εn+1
l | ≤ −r|εn+1

l−1 |+ (σα,k + 2r)|εn+1
l | − r|εn+1

l+1 |

≤ | − rεn+1
l−1 + (σα,k + 2r)εn+1

l − rεn+1
l+1 |

= |c1εnl +

n−1∑
j=1

cj+1ε
n−j
l + dn+1ε

0
l |

≤ c1|εnl |+
n−1∑
j=1

cj+1|εn−jl |+ dn+1|ε0l |

||En+1||∞ ≤ c1||En||∞ +

n−1∑
j=1

cj+1||En−j ||+ wαn+1||E0||∞

≤

c1 +

n−1∑
j=1

cj+1 + wαn+1

 ||E0||∞

= ||E0||∞

||En+1||∞ ≤ ||E0||∞

Hence, the following theorem is obtained.

Theorem 3.2 The time fractional implicit difference approximation defined by (16) and (18) are unconditionally
stable.
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3.1. Convergence

To discuss the convergence of implicit finite difference approximation for time fractional heat conduction equation
under non-homogeneous boundary conditions of second kind, let θ(xi, F0n) be the exact solution of the time frac-
tional heat conduction Eqs. (12)-(14) at mesh point (xi, F0n). Define eni = θ(xi, F0n)− θni , i = 1, 2, 3.....p− 1;n =
1, 2, 3......m and en = (σα,ke

n
1 , σα,ke

n
2 , σα,ke

n
3 .....σα,ke

n
p−1)t. Using e0 = 0, and substitution into (16)-(18) leads to,

−re1
i−1 + (σα,k + 2r)e1

i − re1
i+1 = R1

i

−ren+1
i−1 + (σα,k + 2r)en+1

i − ren+1
i+1 = c1e

n
i +

n−1∑
j=1

cj+1e
n−j
i +Rn+1

i

where,

Rn+1
i = σα,kθ(xi, F0n+1

)− σα,kθ(xi, F0n) + σα,k

n−1∑
j=1

wαj
[
θ(xi, F0n+1−j )

−θ(xi, F0n−j )
]
− r

[
θ(xi+1, F0n+1

)− 2θ(xi, F0n+1
) + θ(xi−1, F0n+1

)
]
− Pn+1

i

= σα,k

n∑
j=0

wαj
[
θ(xi, F0n+1−j )− θ(xi, F0n−j )

]
− r

[
θ(xi+1, F0n+1)− 2θ(xi, F0n+1) + θ(xi−1, F0n+1)

]
− Pn+1

i (19)

From Eq. (15), we have

σα,k

n∑
j=0

wαj
[
θ(xi, F0n+1−j )− θ(xi, F0n−j )

]
=
∂αθ(xi, F0n+1)

∂Fα0n+1

+ C̄1k (20)

and

θ(xi+1, F0n+1
)− 2θ(xi, F0n+1

) + θ(xi−1, F0n+1
)

h2
=
∂2θ(xi, F0n+1

)

∂x2
+ C2h

2 (21)

Therefore from Eqs. (19), (20) and (21) we get,

|Rn+1
i | ≤ C(k1+α + kαh2), i = 1, 2, 3...p− 1;n = 1, 2, 3...m.

where, C is a constant.

Theorem 3.3 ||en||∞ ≤ C(wαn)−1(k1+α + kαh2), n = 1, 2, ....m where, ||en||∞ = max︸︷︷︸
1≤i≤p−1

|eni | and C is a constant.

Proof : We will prove the above theorem by mathematical induction method. For n = 1, let ||e1||∞ = |σα,ke1
l | =

|σα,k||e1
l | = max︸︷︷︸

1≤i≤p−1

|σα,ke1
i | = |σα,k| max︸︷︷︸

1≤i≤p−1

|e1
i | i.e ||e1||∞ = |e1

l | = max︸︷︷︸
1≤i≤p−1

|e1
i |, hence we have

|e1
l | ≤ −r|e1

l+1|+ (σα,k + 2r)|e1
l | − r|e1

l−1|
≤ | − re1

l+1 + (σα,k + 2r)e1
l − re1

l−1|
= |R1

i |
≤ C(wα1 )−1(k1+α + kαh2)

Suppose that ||ej ||∞ ≤ C(wαj )−1(k1+α+kαh2), j=1,2,..n and |σα,ken+1
l | = max︸︷︷︸

1≤i≤p−1

|σα,ke1
i | i.e |e

n+1
l | = max︸︷︷︸

1≤i≤p−1

|e1
i |.

Here we note that (wαj )−1 ≤ (wαn)−1, j=1,2,3.....n. Then we have

|en+1
l | ≤ −r|en+1

l+1 |+ (σα,k + 2r)|en+1
l | − r|en+1

l−1 |

≤ | − ren+1
l+1 + (σα,k + 2r)en+1

l − ren+1
l−1
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= |c1enl +

n−1∑
j=1

cj+1e
n−j
l +Rn+1

i |

≤ c1|enl |+
n−1∑
j=1

cj+1|en−jl |+ C(k1+α + kαh2)

≤ c1||en||∞ +

n−1∑
j=1

cj+1||en−j ||∞ + C(k1+α + kαh2)

≤

c1 +

n−1∑
j=1

cj+1 + wαn+1

 (wαn+1)−1C(k1+α + kαh2)

= (wαn+1)−1C(k1+α + kαh2)

Since,

lim
n→∞

(wαn+1)−1

(n+ 1)α
= lim
n→∞

(n+ 1)−α

(n+ 2)1−α − (n+ 1)1−α

= lim
n→∞

(n+ 1)−1

(1 + 1
n+1 )1−α − 1

= lim
n→∞

(n+ 1)−1

(1− α)(n+ 1)−1

=
1

1− α
,

hence, there is a constant C̄,such that ||en||∞ ≤ C̄(n + 1)α(k1+α + kαh2). Since, nk ≤ F0 is finite, we obtain the
following result.

Theorem 3.4 Let θni be the approximate value of θ(xi, F0n) computed by use of the difference scheme (16)-(18)
then there is a positive constant C such that |θni − θ(xi, F0n)| ≤ C(k + h2), i = i, 2, 3...p− 1, n = 1, 2, 3...m.

4. Numerical computation and discussion

Consider the heat conduction equation in an infinite plate of finite thickness with the boundary and initial condition:

∂αθ

∂Fα0
=
∂2θ

∂x2
(22)

(−1)j
∂θ

∂x
= kij (F0), x = (−1)j , j = 1, 2 (23)

θ(x, 0) = 0, F0 > 0 (24)

where ki1(F0) = ki2(F0) = ki10 exp(−PdF0)
In this study the computation has been made and the results are presented in ten Figures. On the Figures

presented in this study, only the parameters whose values different from the reference value are indicated. The
selected reference values include h = 0.2, k = 1

64 , ki10 = ki20 = 1.0.
Variation of dimensionless temperature θ with space coordinate x is given in Fig. 1. The temperature decreases

as x increases and attains a minimum value at centre i.e x = 0 and then increases symmetrically. Further we observe
that for F0 = 0.375, temperature decreases as α increases as shown in Fig. 1(a) whereas for F0 = 1.50, temperature
increases as α increases as shown in Fig. 1(b).

From Fig. 2, it is evident that, dimensionless temperature increases and attains a maximum value with increase
in time fractional order α. A close examination of Figs. 2 and 3 reveal that:
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• For F0 ≤ 0.375 (say critical time F ∗0 ) and Pd = 1.0, dimensionless temperature decreases for any small increase
in time fractional order α at x = 0.

• For F0 > 0.375 and Pd = 1.0, dimensionless temperature increases and attains a maximum value for certain
time fractional order (say α∗) and decreases further with increase of α as shown in Fig. 3(a).

• When Pd decreases, the critical time F ∗0 increases as shown in Fig. 3(b).

• When F0 increases from 0.375, for fixed Pd = 1.0, the value of α∗ at which maximum temperature attains,
increases, as shown in Fig. 4. Also from Fig. 4 we observe that the value of α at which dimensionless
temperature is maximum, increases with F0, for fixed Pd.

Variation of dimensionless temperature with F0 for different α is given in Fig. 5. For small time fractional
order, dimensionless temperature decreases with increase of F0 at fixed Pd = 1.0, as shown in Fig. 5(a). A close
examination of Fig. 5 reveals that temperature increases and attains a maximum value for certain F ∗0 and then
decreases with increase of α.

From Fig. 6(a) it is evident that dimensionless temperature increases then decreases gradually with F0, whereas,
for α −→ 1 i.e. in case of normal diffusion, dimensionless temperature increases with increase in Fourier number
F0, as shown in Fig. 6(b).

From Fig. 7, it is evident that dimensionless temperature decreases with increase of Pd for any fixed F0 and
any fixed time fractional order α ∈ (0, 1]. At the same time, as Pd increases, for small F0 and small α very close to
zero, dimensionless temperature decreases with increase in α as shown in Fig. 7(a).
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Fig. 8 reveals that the dimensionless temperature increases for very small increase of α at F0 = 1.50, which
shows that there is a state of F0 and α at which dimensionless temperature decreases then further increases with
increase of Pd, as shown in Fig. 7(b).

For very small α in the range of (10−1, 10−2) dimensionless temperature decreases as shown in Fig. 9(a) and
for α in the range (10−1, 10−10) dimensionless temperature decreases and then takes a fixed value for any fixed Pd
and any fixed F0, which indicate the stability of temperature as shown in Fig. 9(b).

Fig. 10 shows the executing time of our method in 2.3 GH i3 processor with 2 GB ram and Windows 7 operating
system.

5. Conclusions

A mathematical model describing time fractional heat transfer (in the sense of Caputo), in an infinite plate of
finite thickness whose faces are subjected to non-homogeneous boundary condition of second kind has been ana-
lyzed using a fully implicit unconditionally stable finite difference scheme. This implicit finite difference scheme is
unconditionally stable and convergent.

Our simulation shows that for F0 ≤ F ∗0 , θ decreases as α increases. Further, after F0 > F ∗0 , θ increases as
α −→ α∗, and for α > α∗, θ decreases as α increases. This is because of Fourier number is a measure of rate
of heat conduction in comparison with the heat storage in the given volume element. Larger the Fourier number,
deeper is the penetration of heat into a body over a given period of time. The Predoditelev number is defined as,

Pd = bR2

a(Tc−T0) , due to which, F ∗0 increases as Pd decreases. For any fixed F0 and Pd, when time fractional order
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α −→ 0, corresponding temperature tends to a fixed value showing the stability of scheme. This technique can also
be applied to solve the time fractional heat conduction equation under most generalized boundary conditions.
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