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Abstract 

 

In this paper the solution procedure in obtaining two times - dependent coefficients in a one dimensional partial 

differential equation and the temperature distribution is discussed and solved. We use the homotopy analysis method to 

obtain the solution of both the unknown coefficients and the temperature distribution.  The solutions to the unknown 

coefficients are obtained by reducing our problem to a system of equations at every time step. There are advantages to 

using HAM, firstly it is independent of small/large physical parameters, there is flexibility on the choice of base 

function and initial guess of solution and lastly there is great generality. The results obtained from this method shows 

high accuracy, computational efficiency and a strong rate of convergence. 
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1. Introduction 

The study of parabolic inverse problems has gained much attention in recent years. The literature, analysis, research and 

implementation of numerical and approximate analytic methods for the solution of parabolic inverse problems, i.e. the 

determination of some unknown functions and coefficients in the parabolic partial differential equations have increased. 

There have been many contributions to the study of inverse parabolic differential equations [1], [3], [5]. In this paper we 

utilize the homotopy analysis method (HAM) [2],proposed by Liao[6-8], to help us obtain approximate and exact 

solutions to the following parameter identification problem of finding coefficients p(t) and q(t) in the diffusion equation: 

     t xx xu u q t u p t u f x, t , 0 x l, 0 t ,                                                                                                      (1.1) 

With the initial condition 

   u x,0 k x , 0 x l,                                                                                                                                                 (1.2) 

And boundary condition 

   0u 0, t g t , 0 t ,                                                                                                                                                    (1.3) 

   1u l, t g t , 0 t ,                                                                                                                                                     (1.4) 

And subject to the additional specifications 

   1u x , t E t , 0 x l, 0 t ,                                                                                                                                  (1.5) 

And 

   2u x , t E t , 0 x l, 0 t ,                                                                                                                                 (1.6) 

Where f(x, t), k(x),      0 1 1g t ,g t , E t 0 and  2E t 0  are known functions, while u(x,t) , p(t) and q(t) are unknown.  

The points x  and x  are given, and are found in the spatial domain of the problem. 

This problem has been solved by Saadatmandi and Dehghan [3] where they used the tau technique to determine the 

unknown techniques to determine p (t) and q(t). The technique used by Saadatmandi and Dehghan consisted of reducing 
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the problem to a set of algebraic equations by expanding the approximate solutions  of u(x,t), p(t) and q(t) in terms of 

shifted Legendre polynomials with unknown coefficients. In utilizing operational matrices and given derivatives, they 

used the tau method to evaluate the unknown coefficients of shifted Legendre polynomials. 

Unlike other perturbation methods, HAM avoids discretization, provides us with efficient numerical solution with high 

accuracy; there is minimal calculation and the avoidance of physically unrealistic assumptions. The convergence region 

for the series solution obtained by HAM is determined by the convergence-control parameter h.  

The paper contains the following sections: 

In Section 2, we discuss the methodology of the homotopy analysis method. We look at the solution of the parabolic 

inverse problem with two unknown time – dependent coefficients in Section 3. In section 4, we look at numerical 

examples; we discuss and analyze the results. 

2. Homotopy analysis method 

To illustrate the basic idea of the HAM, we consider the following differential equation: 

   N u x, t s x, t ,                                                                                                                                                          (2.1) 

Where N is a nonlinear operator, x and t denotes independent and dependent variables respectively, u is an unknown 

function and s(x, t) is the nonhomogeneous term.  By means of HAM, we first construct a zeroth-order deformation 

equation 

         01 r L x, t;r u x, t rhN x, t;r s x, t ,                                                                                                        (2.2) 

Where  r 0,1 is the embedding parameter, h 0  is a convergence-control, L is an auxiliary linear operator,  x, t; r

is an unknown factor,  0u x, t  is an initial guess of u(x,t). It is obvious that when the embedding parameter r goes from 

0 to 1, the values for  x, t; r  becomes 

       0x, t;0 u x, t , x, t;1 u x, t ,                                                                                                                 (2.3) 

Respectively. Thus as r increases from 0 to 1, the solution  x, t; r  varies from the initial guess  
0

u x,t  to the solution 

u(x, t). Expanding  x, t; r  in Taylor series with respect to r, we obtain 

      m

0 m

m 1

x, t; r u x, t u x, t r ,




                                                                                                                   (2.4) 

Where  

 
 m

m r 0m

x, t; r1
u x, t | ,

m! r


 



                                                                                                                                        (2.5) 

The convergence of the series (2.4) depends upon the convergence-control parameter h . 

With HAM, we have the freedom to choose the initial guess  
0

u x,t , the auxiliary linear operator L, and the nonzero 

convergence-control parameter h . We assume that all of them are properly chosen so that: 

1) The solution  x, t; r of the zeroth-order deformation equation (2.2) exists for all  r 0,1 . 

2) The homotopy analysis derivative   D x,t;rm   exists for m = 1, 2, 3,…,  . 

3) The power series (2.4) of  x, t; r  converges at r =1. 

Then from Eqs. (2.3) and (2.4), we have under these assumptions the solution series 

     0 m

m 1

u x, t u x, t u x, t ,




                                                                                                                                        (2.6) 

Which must be one of the solutions of the original nonlinear equation, as proven by Liao [8]?  

Define the vectors 

      n 0 1 nu u x, t ,u x, t ,...,u x, t ,


                                                                                                                            (2.7) 

Differentiating the zeroth-order deformation equation (2.2) m – times with respect to r and then dividing them by m! 

And finally setting r = 0 (Taking the mth – order homotopy derivative). Firstly, since L is a linear operator independent 

of r, it holds 

      

        

m 0

m 0 0

D 1 r L x, t; r u x, t

D L x, t; r r x, t; r u x, t r u x, t ,

    

       

                                                                                                  (2.8) 

And using Homotopy Properties [8] 
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        
      

m 0 0

m m 0 m

D L x, t; r r x, t; r u x, t r u x, t

L D x, t; r D r x, t; r u D r ,

      

     
 

                                                                                                  (2.9) 

And Homotopy Property [8] 

         

       

m m 0 m

m m 1 0 m

L D x, t; r D r x, t; r u x, t D r

L u x, t u x, t u x, t D r ,

    
 

    

                                                                                                  (2.10) 

Which equals t the mL x 
   when m=1, and m m 1L x x 

   when m > 1, respectively. Thus, the m-th – order deformation 

equation becomes 

   m m m 1 m m 1L u x, t u x, t hR u ,


 

 
     

 
                                                                                                                (2.11) 

Where 

 

   m 1

m m 1 r 0m 1

N x, t; r s x, t1
R u | ,

m 1 ! r




 

      
 

  
                                                                                         (2.12) 

And 

m

0, m 1
,

1, m 1


  


                                                                                                                                                             (2.13) 

It should be emphasized that  mu x, t  for m 1  is governed by the linear equation (2.11) with linear boundary 

conditions that come from the original problem. Therefore the solution to the differential equation obtained by HAM is 

a family of solutions expressed using the convergence-control parameter h .  

3. Approximate analytical solution to the inverse problem with HAM 

In this paper, we use HAM to obtain the approximate analytical solution to the inverse problem by obtaining  u x, t , p 

(t) and q (t). 

Using the solution procedure by HAM, we define a linear operator in the form. 

Solution procedure by HAM, we define a linear operator in the form  

 
 x, t; r

L x, t; r ,
t


    

                                                                                                                                              (3.1) 

With the property 

 1L c x 0,                                                                                                                                                                      (3.2) 

Where  1c x is the integration constant? The nonlinear operator is taken as 

               t xx xN x, t;r u x, t;r u x, t;r q t u x, t p t u x, t f x, t ,                                                                     (3.3) 

So we can define  
mR   as 

   
 

 
     

2

m 1 m 1 m 1

m m 1 m 1 m 1 m 12

u x, t u x, t u x, t
R u q t p t u x, t f x, t

t xx


  

   

   
      

  
                                    (3.4) 

Using (2.11), (2.13) and (3.3), we can get 

     m m m 1 m m 1 1u x, t u x, t h R u dt c x ,


 

 
    

 
                                                                                                       (3.5) 

The parameters used during the application of HAM are as follows:  

The initial guess is  0u x, t , which is found by analyzing (1.2)-(1.6) 

   m 0 1 2

m 0

u x, t u x, t u u u ...,




                                                                                                                              (3.7) 

The solutions for p(t)  and q(t) are found by solving the system of the following equations:   

   
   

 
   

   
   

 
   

2

m 1 m 1 m 1

m 1 m 1 m 12

x xx x

2

m 1 m 1 m 1

m 1 m 1 m 12

x xx x

u x, t u x, t u x, t
f x, t q t p t u x, t

t xx

u x, t u x, t u x, t
f x, t q t p t u x, t

t xx





  

  



  

  



     
             

     

             

                                      (3.8) 
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Note that 

         m 0 1 2

m 0

p t p t p t p t p t ...




                                                                                                                        (3.9) 

         m 0 1 2

m 0

q t q t q t q t q t ...




                                                                                                                      (3.10) 

The convergence-control parameter h is calculated by setting      
HAM exact

u l, t u l, t , and then solving for h. 

4. Numerical examples 

Example 1: Consider (1.1)-(1.6) with and 

 

Solutions obtained with HAM: 

In analyzing (1.2)-(1.6) the initial guess is  

 

 

Exact Solutions: 

 

 

Example 2: Consider (1.1)-(1.6) with l 1, 1   and 

 

 

 

 

 

             

  

3

0

3

1

2

3

1

3

2

2 2 2

3 2

g t 1 t ,

g t exp(t) cos(1) t ,

k x x cos(x),

x 0.15 , x 0.75

E t 0.0225exp(t) cos(0.15) t ,

E t 0.4125exp(t) cos(0.75) t ,

f x, t 1 t sin t x exp(t) t sin x 2 exp(t) 2xt exp 2t 1 t sin t cos x

3 t t sin t t ,

 

 

  

 

 

  

  

        

  

 

In analyzing (1.2)-(1.6) our initial guess is  

 

The results obtained for p (t) and q(t) using HAM when h=0 are listed below 

 

 

 

 

 

 

 

 

 

 

3,1  l

 

   

 

   

   

              233

2

1

1

0

exp1sincos1.0sin1,

,16.0sin

,12.0sin

6.0,2.0

,1

,11sin

,1

txtttxtxttxf

ttE

ttE

xx

xk

ttg

tg

















    1sin,0  xttxu

   

   
  2

2

1.0

1

1sin,
2

ttq

tettp

xttxu

t









   

   
  2

3

1.0

1sin,
2

ttq

etttp

xttxu

t









      32

0 cosexp, txtxtxu 

          32 cosexp,, txtxtxutxu EXACTHAM 
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Table 1: Results for  

t Exact p(t) HAM Absolute Error 

0.0 0 0 0 

0.05 0.05247916927 0.05247916927 0 

0.10 0.1098334166 0.1098334166 0 

0.15 0.1719381325 0.1719381323 102 10  

0.20 0.2386693308 0.2386693311 103 10  

0.25 0.3099039593 0.3099039593 0 

0.30 0.3855202067 0.3855202067 0 

0.35 0.4653978075 0.4653978073 102 10  

0.40 0.5494183423 0.5494183423 0 

0.45 0.6374655341 0.6374655340 101 10  

0.50 0.7294255386 0.7294255390 104 10  

0.55 0.8251872289 0.8251872290 101 10  

0.60 0.9246424734 0.9246424734 0 

0.65 1.027686406 1.027686405 91 10  

0.70 1.134217687 1.134217686 91 10  

0.75 1.244138760 1.244138759 91 10  

0.80 1.357356091 1.357356089 92 10  

0.85 1.473780405 1.473780404 91 10  

0.90 1.593326910 1.593326911 91 10  

0.95 1.715915505 1.715915503 92 10  

1.0 1.841470985 1.841470985 0 
 

 

 

 

Table 2: Results for q (t) 

t Exact q(t) HAM Absolute Error 

0.0 0 0 0 

0.05 0.05256355480 0.05256355482 112 10  

0.10 0.1105170918 0.1105170918 0 

0.15 0.1742751364 0.1742751363 101 10  

0.20 0.2442805516 0.2442805516 0 

0.25 0.3210063542 0.3210063540 102 10  

0.30 0.4049576424 0.4049576420 104 10  

0.35 0.4966736422 0.4966736412 71.01 10  

0.40 0.5967298792 0.5967298784 108 10  

0.45 0.7057404832 0.7057404834 102 10  

0.50 0.8243606355 0.8243606348 107 10  

0.55 0.9532891599 0.9532891592 107 10  

0.60 1.093271280 1.093271281 91 10  

0.65 1.245101539 1.245101538 91 10  

0.70 1.409626895 1.409626894 91 10  

0.75 1.587750013 1.587750009 94 10  

0.80 1.780432742 1.780432740 92 10  

0.85 1.988699824 1.988699822 92 10  

0.90 2.213642800 2.213642800 0 

0.95 2.456424176 2.456424174 92 10  

1.0 2.718281828 2.718281828 0 

 

 

 

 

 

 tp
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Example 3: Consider (1.1)-(1.6) with and 

 

In analyzing (1.2)-(1.6) our initial guess is  

 

The results obtained for p (t) and q(t) using HAM when h=0 are listed below 

 
Table 3: Results for p (t) 

t Exact p(t) HAM Absolute Error 

0.0 1 1 0 

0.05 1.049937513 1.049937513 0 

0.10 1.099500417 1.099500416 91 10  

0.15 1.148315662 1.148315661 91 10  

0.20 1.196013316 1.196013316 0 

0.25 1.242228105 1.242228105 0 

0.30 1.286600947 1.286600947 0 

0.35 1.328780450 1.328780449 91 10  

0.40 1.368424398 1.368424397 91 10  

0.45 1.405201196 1.405201194 92 10  

0.50 1.438791281 1.438791281 0 

0.55 1.468888487 1.468888487 0 

0.60 1.495201369 1.495201368 91 10  

0.65 1.517454469 1.517454470 91 10  

0.70 1.535389531 1.535389530 91 10  

0.75 1.548766652 1.548766652 0 

0.80 1.557365367 1.557365367 0 

0.85 1.560985674 1.560985675 91 10  

0.90 1.559448972 1.559448970 92 10  

0.95 1.552598935 1.552598934 91 10  

1.0 1.540302306 1.540302306 0 

 
Table 4: Results for q (t) 

t Exact q(t) HAM Absolute Error 

0.0 1 1 0 

0.05 1.250125 1.250124999 91 10  

0.10 1.501000 1.501000 0 

0.15 1.753375 1.753374998 92 10  

0.20 2.008000 2.008000001 91 10  

0.25 2.265625 2.265625 0 

0.30 2.527000 2.527000 0 

0.35 2.792875 2.792875 0 

0.40 3.064000 3.064000 0 

0.45 3.341125 3.341124998 92 10  

0.50 3.625000 3.624999998 92 10  

0.55 3.916375 3.916374997 93 10  

0.60 4.216000 4.216000 0 

0.65 4.524625 4.524625 0 

0.70 4.843000 4.842999992 98 10  
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t Exact q(t) HAM Absolute Error 

0.75 5.171875 5.171875004 94 10  

0.80 5.512000 5.511999996 94 10  

0.85 5.864125 5.864125004 94 10  

0.90 6.229000 6.228999996 94 10  

0.95 6.607375 6.607375 0 

1.0 7 7 0 

5. Conclusion 

We have shown that HAM can be used to accurately predict the results u(x, t), p (t) and q (t). The inverse parabolic 

partial differential equation has been discussed theoretically and analyzed numerically. The freedom in choosing h 

enables us to adjust and control the convergence of the solution series and this differentiates the homotopy analysis 

method from other existing methods such as the homotopy perturbation method, adomain decomposition method and 

variational iteration method. 

MAPLE was used for the computation presented in this paper. 
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