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Abstract

In this paper we introduce a new version of the trial equation method for solving non-integrable partial differential
equations in mathematical physics. Some exact solutions including soliton solutions, rational and elliptic function
solutions to the generalized (2+1)-dimensional ZK-MEW equation and the generalized Davey-Stewartson equation
with the complex coefficients are obtained by this method.
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1. Introduction

The investigation of exact solutions of nonlinear evolution equations (NLEEs) plays a crucial role in the analysis
of some physical phenomena. It is difficult to obtain the exact solution for these problems. In recent decades,
there has been great development in exact solution for nonlinear partial differential equations (PDEs). Many
powerful methods, such as the Backlund transformation, the inverse scattering method [1], bilinear transformation,
the tanh-sech method [2], the extended tanh method, the pseudo-spectral method [3], the trial function and the
sine-cosine method [4], the Hirota method [5], the tanh-coth method [6-7], the exponential function method [8], the
(G′/G)-expansion method [9-13], the homogeneous balance method [14], the F-expansion method [15-20], the trial
equation method [21-31] have been used to investigate nonlinear partial differential equations problems. The types
of solutions of NLEEs, that are integrated using various mathematical techniques, are very important and appear
in various areas of physics, applied mathematics and engineering.
The spatially one-dimensional KdV equation

ut + αuux + uxxx = 0,

governs the one-dimensional propagation of small-amplitude weakly dispersive waves, and plays a major role in the
soliton concept. The term soliton was coined by Zabusky and Kruskal [32] who found particle-like waves which
retained their shapes and velocities after collisions. The balance between the non-linear convection term uux and
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the dispersion effect term uxxx in the KdV equation gives rise to solitons. Solitons are defined as non-linear waves
characterized as follows [33]:

• localized waves that propagate without change of its shape, velocity, etc.;

• localized waves that are stable against mutual collisions and retain their identities to indicate that soliton has
the property of a particle.

In this paper, extended trial equation methods is used to obtain a generalized soliton solution with some free
parameters of the generalized (2+1)-dimensional Zakharov-Kuznetsov-Modified Equal-Width (ZK-MEW) equation
[34,35]

ut + α(un)x + (βuxt + γuyy)x = 0. (1)

and generalized Davey-Stewartson equation (DSE) that arises in the study of fluid dynamics [36,37]

iqt + a(qxx + qyy) + b|q|2nq = αqr (2)

rxx + ryy + β(|q|2n)xx = 0. (3)

Exact solutions of the ZK-MEW equation were obtained both by using the tanh and sine-cosine methods by Wazwaz
[34] and the modified simple equation method by Zayed and Arnous [35]. The Cauchy problem of the generalized
Davey-Stewartson systems and the global solvability and existence of self-similar solutions to a generalized Davey-
Stewartson system were studied in some sense by Zhao [38]. Ebadi and Biswas studied by applying the (G′/G)-
method carry out the integration of Davey-Stewartson equation [36] while Bekir and Cevikel have solved them using
the sine-cosine and the exp-function methods [37]. Subsequently, using the ansatz method this equation is integrated
in (1 + 2)-dimensions with power law nonlinearity. Here, we use the extended trial equation method to solve the
soliton solutions of generalized (1 + 2)-dimensional ZK-MEW equation and generalized Davey-Stewartson equation
with the complex coefficients. The extended trial equation method will be employed to back up our analysis in
obtaining exact solutions with distinct physical structures.

2. The extended trial equation method

Step 1. For a given nonlinear partial differential equation with rank inhomogeneous

P (u, ut, ux, uxx, . . . ) = 0, (4)

take the wave transformation

u(x1, . . . , xN , t) = u(η), η = λ




N∑

j=1

xj − ct


 , (5)

where λ 6= 0 and c 6= 0. Substituting Eq. (5) into Eq. (4) yields a nonlinear ordinary differential equation,

N(u, u′, u′′, ...) = 0. (6)

Step 2. Take transformation and trial equation as follows:

u =
δ∑

i=0

τiΓi, (7)

in which

(Γ′)2 = Λ(Γ) =
Φ(Γ)
Ψ(Γ)

=
ξθΓθ + ... + ξ1Γ + ξ0

ζεΓε + ... + ζ1Γ + ζ0
, (8)

where τi (i = 0, ..., δ), ξi (i = 0, ..., θ) and ζi (i = 0, ..., ε) are constants. Using the relations (7) and (8), we can find

(u′)2 =
Φ(Γ)
Ψ(Γ)

(
δ∑

i=0

iτiΓi−1

)2

, (9)



124 International Journal of Applied Mathematical Research

u′′ =
Φ′(Γ)Ψ(Γ)− Φ(Γ)Ψ′(Γ)

2Ψ2(Γ)

(
δ∑

i=0

iτiΓi−1

)
+

Φ(Γ)
Ψ(Γ)

(
δ∑

i=0

i(i− 1)τiΓi−2

)
, (10)

where Φ(Γ) and Ψ(Γ) are polynomials. Substituting these terms into Eq. (6) yields an equation of polynomial Ω(Γ)
of Γ :

Ω(Γ) = %sΓs + ... + %1Γ + %0 = 0. (11)

According to the balance principle we can determine a relation of θ, ε, and δ. We can take some values of θ, ε, and
δ.
Step 3. Let the coefficients of Ω(Γ) all be zero will yield an algebraic equations system:

%i = 0, i = 0, ..., s. (12)

Solving this equations system (12), we will determine the values of ξ0, ..., ξθ; ζ0, ..., ζε and τ0, ..., τδ.
Step 4. Reduce Eq. (8) to the elementary integral form,

±(η − η0) =
∫

dΓ√
Λ(Γ)

=
∫ √

Ψ(Γ)
Φ(Γ)

dΓ. (13)

Using a complete discrimination system for polynomial to classify the roots of Φ(Γ), we solve the infinite integral
(13) and obtain the exact solutions to Eq. (6). Furthermore, we can write the exact traveling wave solutions to Eq.
(4) respectively.

3. Applications

To illustrate the necessity of our new view concerning the trial equation method, we introduce two case studies.

Example 3.1 Application to the generalized (2+1)-dimensional ZK-MEW equation.

The generalized (2+1)-dimensional ZK-MEW equation [34,35] is in the form of

ut + α(un)x + (βuxt + γuyy)x = 0, (n > 1)

where α, β and γ are arbitrary constants.
In order to look for travelling wave solutions of Eq. (1), we make the transformation

u(x, y, t) = u(η), η = κ1x + κ2y − ct,

where κ1, κ2 and c are real constants. Then, integrating the resulting equation with respect to η and setting the
integration constant to zero yield the ordinary differential equation

−cu + ακ1u
n + (γκ1κ

2
2 − cβκ2

1)u
′′ = 0, (14)

Eq. (14), with the transformation

u = ω
1

n−1 , (15)

reduces to

(γκ2
2 − cβκ1)Qωω′′ + (γκ2

2 − cβκ1)W (ω′)2 − cω2 + ακ1ω
3 = 0, (16)

where
Q = κ1/(n− 1), W = κ1(2− n)/(n− 1)2.

Substituting Eqs. (9) and (10) into Eq. (16) and using balance principle yields θ = ε + δ + 2. If we take θ = 3,
ε = 0 and δ = 1, then

(ω′)2 =
τ2
1 (ξ3Γ3 + ξ2Γ2 + ξ1Γ + ξ0)

ζ0
,
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where ξ3 6= 0, ζ0 6= 0. Respectively, solving the algebraic equation system (12) yields

ξ0 =
τ0(2ακ1τ0(βκ1ξ1τ1(Q + W )− ζ0τ0)− γκ2

2ξ1τ1(3Q + 2W ))
2τ2

1 (3αβκ2
1τ0(Q + W )− γκ2

2(3Q + 2W ))
, ξ3 =

ακ1τ1(2ζ0τ0 + βκ1ξ1τ1(Q + W ))
τ0(3αβκ2

1τ0(Q + W )− γκ2
2(3Q + 2W ))

,

ξ2 =
6ακ1τ0(ζ0τ0 + βκ1ξ1τ1(Q + W ))− γκ2

2ξ1τ1(3Q + 2W )
6αβκ2

1τ
2
0 (Q + W )− 2γκ2

2τ0(3Q + 2W )
, c =

(Q + W )(6ακ1ζ0τ
2
0 + γκ2

2ξ1τ1(3Q + 2W ))
(3Q + 2W )(2ζ0τ0 + βκ1ξ1τ1(Q + W ))

,

ξ1 = ξ1, ζ0 = ζ0, τ0 = τ0, τ1 = τ1.

Substituting these results into Eq. (8) and Eq. (13), we can write

±(η − η0) =

√
ζ0τ0(3αβκ2

1τ0(Q + W )− γκ2
2(3Q + 2W ))

ακ1τ1(2ζ0τ0 + βκ1ξ1τ1(Q + W ))
×

∫
dΓ√

Γ3 + `2Γ2 + `1Γ + `0
, (17)

where

`2 =
6ακ1τ0(ζ0τ0 + βκ1ξ1τ1(Q + W ))− γκ2

2ξ1τ1(3Q + 2W )
2ακ1τ1(2ζ0τ0 + βκ1ξ1τ1(Q + W ))

,

and

`1 =
ξ1τ0(3αβκ2

1τ0(Q + W )− γκ2
2(3Q + 2W ))

ακ1τ1(2ζ0τ0 + βκ1ξ1τ1(Q + W ))
, `0 =

τ2
0 (2ακ1τ0(βκ1ξ1τ1(Q + W )− ζ0τ0)− γκ2

2ξ1τ1(3Q + 2W ))
2ακ1τ3

1 (2ζ0τ0 + βκ1ξ1τ1(Q + W ))
.

Integrating Eq. (17), we obtain the solutions to the Eq. (1) as follows:

±(η − η0) = −2
√

A
1√

Γ− α1

, (18)

±(η − η0) = 2
√

A

α2 − α1
arctan

√
Γ− α2

α2 − α1
, α2 > α1, (19)

±(η − η0) =
√

A

α1 − α2
ln

∣∣∣∣
√

Γ− α2 −
√

α1 − α2√
Γ− α2 +

√
α1 − α2

∣∣∣∣ , α1 > α2, (20)

±(η − η0) = 2
√

A

α1 − α3
F (ϕ, l), α1 > α2 > α3,

where

A =
ζ0τ0(3αβκ2

1τ0(Q + W )− γκ2
2(3Q + 2W ))

ακ1τ1(2ζ0τ0 + βκ1ξ1τ1(Q + W ))
, F (ϕ, l) =

∫ ϕ

0

dψ√
1− l2 sin2 ψ

,

and

ϕ = arcsin
√

Γ− α3

α2 − α3
, l2 =

α2 − α3

α1 − α3
.

Also α1, α2 and α3 are the roots of the polynomial equation

Γ3 +
ξ2

ξ3
Γ2 +

ξ1

ξ3
Γ +

ξ0

ξ3
= 0.

Substituting the solutions (18)-(20) into (7) and (15), denoting τ̄ = τ0 + τ1α1, and setting

v =
(Q + W )(6ακ1ζ0τ

2
0 + γκ2

2ξ1τ1(3Q + 2W ))
(3Q + 2W )(2ζ0τ0 + βκ1ξ1τ1(Q + W ))

,

we get, respectively,

u(x, y, t) =
[
τ̄ +

4τ1A

(κ1x + κ2y − vt− η0)2

] 1
n−1

, (21)
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u(x, y, t) =

{
τ̄ + τ1(α2 − α1)

[
1− tanh2

(
∓1

2

√
α1 − α2

A

(
κ1x + κ2y − vt− η0

)
)]} 1

n−1

, (22)

u(x, y, t) =

{
τ̄ + τ1(α1 − α2)cosech2

(
1
2

√
α1 − α2

A

(
κ1x + κ2y − vt

)
)} 1

n−1

. (23)

If we take τ0 = −τ1α1, that is τ̄ = 0, and η0 = 0, then the solutions (21)-(23) can reduce to rational function
solution

u(x, y, t) =
[

2
√

τ1A

κ1x + κ2y − vt

] 2
n−1

, (24)

1-soliton solution

u(x, y, t) =
A1

cosh
2

n−1 [∓B(κ1x + κ2y − vt)]
, (25)

and singular soliton solution

u(x, y, t) =
A2

sinh
2

n−1 [B(κ1x + κ2y − vt)]
, (26)

where

A1 = [τ1(α2 − α1)]
1

n−1 , A2 = [τ1(α1 − α2)]
1

n−1 , B =
1
2

√
α1 − α2

A
.

Here, A1 and A2 are the amplitudes of the solitons, κ1 is the inverse width of solitons in the x−direction and κ2

is the inverse width of solitons in the y−direction and v is the velocity of the solitons. Thus, we can say that the
solitons exist for τ1 > 0.
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(a) Profile of 1-soliton solution
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Figure 1: Figure 1 respectively is shown numerical solutions of 1-soliton solution and singular soliton solution at n =
3, κ1 = κ2 = 1, A1 = A2 = 4, B = 1 while vt = 1.

Example 3.2 Application to the DSE in (1+2) dimensions.

In (2) and (3), q and r are the dependent variables while x, y and t are the independent variables. The first two
of the independent variables are the spatial variables while t represents time. The exponent n is the power law
parameter. It is necessary to have n > 0. In (2) and (3), q is a complex valued function while r is a real valued
function. Also, a, b, α and β are all constant coefficients. For solving the Eqs. (2) and (3) with the trial equation
method, using the wave variables

q(x, y, t) = u(η)eiφ, r(x, y, t) = v(η) (27)

φ = φ1x + φ2y + φ3t, η = η1x + η2y + η3t (28)
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where φ1, φ2, φ3, η1, η2 and η3 are real constants, converts (2) and (3) to the system of ODEs

(η3 + 2aφ1η1 + 2aφ2η2)u(η) = 0, (29)

− (φ3 + aφ1
2 + aφ2

2)u(η) + a(η1
2 + η2

2)u′′(η) + bu2n+1(η)− αu(η)v(η) = 0, (30)

(η1
2 + η2

2)v′′(η) + βη1
2(u2n)′′(η) = 0 (31)

where primes denote the derivatives with respect to η . Eq. (31) is then integrated term by term two times where
integration constants are considered zero. This converts it into

v(η) =
−βη1

2

η1
2 + η2

2
u2n(η). (32)

Substituting (32) into (30) gives

− (φ3 + aφ1
2 + aφ2

2)u(η) + a(η1
2 + η2

2)u′′(η) +
(

b + αβ
η1

2

η1
2 + η2

2

)
u2n+1(η) = 0. (33)

Eq. (33), with the transformation

u(η) = V
1
n (η) (34)

reduces to

QV V ′′ + P (V ′)2 − [
φ3 + aφ1

2 + aφ2
2
]
RV 2 + WV 4 = 0, (35)

where

Q = an
(
η1

2 + η2
2
)2

, P = a(1− n)
(
η1

2 + η2
2
)2

, R = n2
(
η1

2 + η2
2
)
, W = n2

[
b
(
η1

2 + η2
2
)

+ αβη1
2
]
.

Substituting Eqs. (9) and (10) into Eq. (35) and using balance principle yields θ = ε + 2δ + 2. If we take θ = 4,
ε = 0 and δ = 1, then

(V ′)2 =
τ2
1 (ξ4Γ4 + ξ3Γ3 + ξ2Γ2 + ξ1Γ + ξ0)

ζ0
,

where ξ4 6= 0, ζ0 6= 0. Respectively, solving the algebraic equation system (12) yields

ξ0 =
(

τ0

τ1

)2 (
ξ2 +

5ζ0τ
2
0 W

P + 2Q

)
, ξ1 =

2τ0

τ1

(
ξ2 +

4ζ0τ
2
0 W

P + 2Q

)
, ξ2 = ξ2, ξ3 = −4ζ0τ0τ1W

P + 2Q
, ξ4 = − ζ0τ

2
1 W

P + 2Q
,

φ1 = φ1, φ2 = φ2, φ3 =
ξ2(P + Q)(P + 2Q) + ζ0(6τ2

0 W (P + Q)− aR(P + 2Q)(φ2
1 + φ2

2))
ζ0R(P + 2Q)

ζ0 = ζ0, τ0 = τ0, τ1 = τ1.

Also from Eq. (29), it can be seen that η3 = −2a(φ1η1 + φ2η2). Substituting these results into Eq. (8) and Eq.
(13), we can write

±(η − η0) =

√
−P + 2Q

τ2
1 W

×
∫

dΓ√
Γ4 + `3Γ3 + `2Γ2 + `1Γ + `0

, (36)

where

`3 =
4τ0

τ1
, `2 = −ξ2(P + 2Q)

ζ0τ2
1 W

, `1 = −2τ0(ξ2(P + 2Q) + 4ζ0τ
2
0 W )

ζ0τ3
1 W

, `0 = −τ2
0 (ξ2(P + 2Q) + 5ζ0τ

2
0 W )

ζ0τ4
1 W

.

Integrating Eq. (36), we obtain the solutions to the Eqs. (2) and (3) as follows:

±(η − η0) = − B

Γ− α1
, (37)
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±(η − η0) =
2B

α1 − α2

√
Γ− α2

Γ− α1
, α2 > α1, (38)

±(η − η0) =
B

α1 − α2
ln

∣∣∣∣
Γ− α1

Γ− α2

∣∣∣∣ , (39)

±(η − η0) =
B√

(α1 − α2)(α1 − α3)
ln

∣∣∣∣∣

√
(Γ− α2)(α1 − α3)−

√
(Γ− α3)(α1 − α2)√

(Γ− α2)(α1 − α3) +
√

(Γ− α3)(α1 − α2)

∣∣∣∣∣ , α1 > α2 > α3, (40)

±(η − η0) = 2

√
B

(α1 − α3)(α2 − α4)
F (ϕ, l), α1 > α2 > α3 > α4,

where

B =

√
−P + 2Q

τ2
1 W

, F (ϕ, l) =
∫ ϕ

0

dψ√
1− l2 sin2 ψ

,

and

ϕ = arcsin

√
(Γ− α1)(α2 − α4)
(Γ− α2)(α1 − α4)

, l2 =
(α2 − α3)(α1 − α4)
(α1 − α3)(α2 − α4)

.

Also α1, α2, α3 and α4 are the roots of the polynomial equation

Γ4 +
ξ3

ξ4
Γ3 +

ξ2

ξ4
Γ2 +

ξ1

ξ4
Γ +

ξ0

ξ4
= 0.

Substituting the solutions (37)-(40) into (7) and (34), we obtain

q(x, y, t) =
{

τ0 + τ1α1 ± τ1B

η1x + η2y + η3t− η0

} 1
n

eiφ, (41)

r(x, y, t) = − βη1
2

η1
2 + η2

2

{
τ0 + τ1α1 ± τ1B

η1x + η2y + η3t− η0

}2

, (42)

q(x, y, t) =

{
τ0 + τ1α1 +

4B2(α2 − α1)τ1

4B2 − [(α1 − α2) (η1x + η2y + η3t− η0)]
2

} 1
n

eiφ, (43)

r(x, y, t) = − βη1
2

η1
2 + η2

2

{
τ0 + τ1α1 +

4B2(α2 − α1)τ1

4B2 − [(α1 − α2) (η1x + η2y + η3t− η0)]
2

}2

, (44)

q(x, y, t) =





τ0 + τ1α2 +
(α2 − α1)τ1

exp
(

α1 − α2

B
(η1x + η2y + η3t− η0)

)
− 1





1
n

eiφ, (45)

r(x, y, t) = − βη1
2

η1
2 + η2

2





τ0 + τ1α2 +
(α2 − α1)τ1

exp
(

α1 − α2

B
(η1x + η2y + η3t− η0)

)
− 1





2

, (46)

q(x, y, t) =





τ0 + τ1α1 +
(α1 − α2)τ1

exp
(

α1 − α2

B
(η1x + η2y + η3t− η0)

)
− 1





1
n

eiφ, (47)
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r(x, y, t) = − βη1
2

η1
2 + η2

2





τ0 + τ1α1 +
(α1 − α2)τ1

exp
(

α1 − α2

B
(η1x + η2y + η3t− η0)

)
− 1





2

, (48)

q(x, y, t) =





τ0 + τ1α1 − 2(α1 − α2)(α1 − α3)τ1

2α1 − α2 − α3 + (α3 − α2) cosh

(√
(α1 − α2)(α1 − α3)

B
(η1x + η2y + η3t)

)





1
n

eiφ, (49)

r(x, y, t) = − βη1
2

η1
2 + η2

2





τ0 + τ1α1 − 2(α1 − α2)(α1 − α3)τ1

2α1 − α2 − α3 + (α3 − α2) cosh

(√
(α1 − α2)(α1 − α3)

B
(η1x + η2y + η3t)

)





2

.

(50)

If we take τ0 = −τ1α1 and η0 = 0, then the solutions (41)-(50) can reduce to rational function solutions

q(x, y, t) =
(
± τ1B

η1x + η2y + η3t

) 1
n

ei(φ1x + φ2y + φ3t), (51)

r(x, y, t) = Υ
(

τ1B

η1x + η2y + η3t

)2

, (52)

q(x, y, t) =

{
4B2(α2 − α1)τ1

4B2 − [(α1 − α2) (η1x + η2y + η3t)]
2

} 1
n

ei(φ1x + φ2y + φ3t), (53)

r(x, y, t) = Υ

{
4B2(α2 − α1)τ1

4B2 − [(α1 − α2) (η1x + η2y + η3t)]
2

}2

, (54)

traveling wave solutions

q(x, y, t) =
{

(α2 − α1)τ1

2

{
1∓ coth

[
α1 − α2

2B
(η1x + η2y + η3t)

]}} 1
n

ei(φ1x + φ2y + φ3t), (55)

r(x, y, t) = Υ
{

(α2 − α1)τ1

2

{
1∓ coth

[
α1 − α2

2B
(η1x + η2y + η3t)

]}}2

, (56)

and soliton solutions

q(x, y, t) =
A3(

D + cosh
[
B1(η1x + η2y + η3t)

]) 1
n

ei(φ1x + φ2y + φ3t), (57)

r(x, y, t) = Υ
A4(

D + cosh
[
B1(η1x + η2y + η3t)

])2 , (58)

where

η3 = −2a(φ1η1 + φ2η2), φ3 =
ξ2(P + Q)(P + 2Q) + ζ0(6τ2

0 W (P + Q)− aR(P + 2Q)(φ2
1 + φ2

2))
ζ0R(P + 2Q)

,

and

Υ = − βη1
2

η1
2 + η2

2
, A3 =

(
2(α1 − α2)(α1 − α3)τ1

α3 − α2

) 1
n

, A4 = A2n
3 ,
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and

B1 =

√
(α1 − α2)(α1 − α3)

B
, D =

2α1 − α2 − α3

α3 − α2
.

From (28), η1 and η2 are the widths of the solitons in the x− and y−directions respectively while η3 is the velocity of
the solitons. From the phase component given by φ, φ1 and φ2 are the phase frequencies in the x- and y-directions
respectively while φ3 is the wave numbers of the solitons. Also, A3 and A4 are the amplitudes of the solitons. Thus,
we can say that the solitons exist for τ1 < 0.
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Figure 2: Numerical solution of (57) at n = 1, η1 = η2 = 1, η3t = 1, A3 = 2, B1 = 2 and D < 0.
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Figure 3: Numerical solutions of (58) at η1 = η2 = 1, η3t = 1, A4 = 4, B1 = 1 and D < 0.

4. Conclusion

In this paper we have used the extended trial equation method to derive exact solutions with distinct physical
structures. This method with symbolic computation on the computer is used for constructing broad classes of
periodic and soliton solutions of two nonlinear equations arising in nonlinear physics. Basic features of the 1-soliton
solution and singular soliton solution were analytically and numerically discussed. We proposed more general
trial equation method as an alternative approach to obtain the analytic solutions of nonlinear partial differential
equations with generalized evolution in mathematical physics. We use the extended trial equation method aided
with symbolic computation to construct the soliton solutions, the elliptic function and rational function solutions
for generalized (2 + 1)-dimensional ZK-MEW equation and generalized Davey-Stewartson system.
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