Identifying the effect of model modifications in State-Based models and systems

Luay Tahat¹, Nada Almasri²*

Management Information Systems Department, Gulf University for Science and Technology
¹ E-mail: tahat.l@gust.edu.kw
²*Corresponding author E-mail: almasri.n@gust.edu.kw

Abstract

System modeling is a widely used technique to model state-based systems. System models are often used during the development of a software system, e.g., in partial code generation and in test generation. Several modeling languages have been developed to model state-based software systems, e.g., EFSM, SDL, and State Charts. Although state-based modeling is very useful, system models are usually large and complex, and they are frequently modified because of specification changes. Identifying the effect of these changes on the model and consequently on the underlying system is usually challenging and time-consuming. In this paper, we present an approach to automatically identify the effect of modifications made to the model. The goal is to identify those parts of the model that may exhibit different behaviors because of the modification. These are usually critical parts of the system that should be carefully tested. In this approach, the difference between the original model and the modified model is identified, and then the affected parts of the model are computed based on model dependence analysis. An empirical study on different EFSM models is performed in order to identify the affected parts of the model after a modification. The results of the study suggest that our approach could considerably reduce the amount of time and efforts spent to validate the model after a modification.

Keywords: EFSM, Model Dependence Analysis, State-Based Systems, System Modeling.

1 Introduction

The demand for large and complex software systems has been steadily increasing over time. The development and maintenance of these systems are difficult and costly due to the increased complexity of the systems. In recent years, several new technologies have emerged, which have made a significant impact on new ways of software development. One of these technologies is a development of modeling techniques to model state-based software systems. System models are often used during the development of a software system, mainly in partial code generation and in test generation for model-based testing. Typically, state-based systems can be modeled using formal description languages. Several modeling languages have been developed to model state-based software systems such as: State Charts [19, 11, 12, 13], Extended Finite State Machines (EFSM) [20, 14, 15], Specification Description Language (SDL) [21, 16, 15], Virtual Finite State Machine (VFSM) [18], and ESTELLE [19]. In recent years, several model-based test generation [20, 22, 23, 24-26] and test suite reduction [9, 13] techniques have been developed based on these modeling languages. System modeling reduces ambiguity, misunderstanding, and misinterpretation of system specifications. However, modern systems tend to be very large and complex [27, 47] and, as a result, they are hard to understand, difficult to modify and debug [28, 29, 27, 47].

During software maintenance of large and evolving software systems, their specification and implementation are modified to fix defects, to enhance or change functionality, to add new functionality, or to delete the existing functionality. Modifications in specifications frequently lead to modifications in system models. After a modification is made to the model, the developer may be interested in parts of the model that affect the modification (modified parts of the model) and parts of the model affected by the modification. Typically, modified models are only used to understand the modifications made in the model. However, developers may have difficulties understanding the effect of modifications on the system model and consequently on the system especially for large system models. Thus, there is a need for techniques that can support understanding of model modifications and identifying their effect on the system.

In this paper, we present an approach of identifying the effect of model-based modifications. The goal is to identify those parts of the model that are related to the modification and may exhibit different behavior because of the
modification. We concentrate on EFSM models; however, the presented approach may be applied to other types of state based modeling methods such as: SDL and State Charts. The approach uses the original model and the modified model, and it automatically identifies a difference between these models, where the difference between two models is a set of elementary model modifications [7, 43]. The approach using model-based dependence analysis identifies parts of the model that affect the modification and parts of the model that are affected by the modification. Our initial experience with the approach shows that it significantly helps in understanding and identifying the effect of modifications on the system.

The rest of the paper is organized as follows: Section 2 provides an overview of state based modeling. Section 3 introduces model-based dependence analysis. Section 4 presents our approach in identifying the effect of model modifications, and it introduces an algorithm to compute the parts affected by the modification as well as the parts affecting the modifications. In Section 5, an empirical study is performed, and the results of the study are presented. Section 6 outlines the related work on the application use of system models. In Section 7, conclusions and future research directions are discussed.

2 State-Based modeling

The process of structuring and formulating software specifications is normally guided by modeling techniques. System models for state-based systems describe the system behavior by a set of states and system actions represented as transitions between states. The languages used for modeling state-based systems are often graphical, which make modeling techniques easy to comprehend and utilize. Modeling techniques have received wide industry acceptance, especially in the fields of telecommunication, embedded systems, and computer networking [14], where state-based systems are prevalent.

The most popular formal description techniques (languages) used for modeling of state-based systems are Finite State Machine (FSM) [17], Extended Finite State Machine (EFSM) [7, 15, 14, 34, 36, 44], Specification Description Language (SDL) [16, 15], State charts [11, 12, 13], Virtual Finite State Machines (VFSM) [18], and ESTELLE [19]. Formal modeling techniques provide the basis to validate the system design [39, 40], to generate system level test suites [38, 41, 40, 37, 14, 31, 32], to simulate the system behavior by executing the model [42, 18] and to determine properties of the system. Although modeling techniques can help eliminate complexity of many of today’s systems, the resulting models are difficult to understand, analyze, and modify [28, 29], especially for large and complex systems [27, 47] where there are a large number of states and transitions. During software maintenance developers are frequently interested in a partial system model related to an element of interest, e.g., a requirement, a transition, or a feature [28, 30, 31, 32, 33, 34], that they need to analyze, understand, or modify, e.g., slices of models [34, 35]. However, the existing techniques do not address the problems of understanding modifications of system models. Thus, there is a need to develop techniques that can help in understanding model modifications.

In this paper, we concentrate on the EFSM system models, however, our approach can be extended to other modeling languages such as SDL, State charts. EFSM [7, 15, 14, 34, 36, 43] is very popular technique for modeling state-based systems like communications and control systems.

An EFSM consists of a set of states (including a start state and an exit state) and transitions between states. A transition is triggered at its originating state when an event occurs (e.g., an input is received) and an enabling condition (e.g., a Boolean expression) associated with the transition is satisfied. When the transition is triggered, a sequence of actions may be performed (which may manipulate variables and produce an output) and the system is transferred to the terminating state of the transition. The following elements are associated with a transition: an event, a condition, and a sequence of actions. Figure 1 shows a graphical representation of an EFSM transition. We distinguish three types of actions: an input action (read), an output action (write), and an assignment action. In our model assignment, actions have syntax of assignment statements and enabling conditions have syntax of conditional statements of C language.

![EFSM Transition](image_url)

An EFSM M is expressed formally as a 7 tuple: $M = (\Sigma, Q, Start, Exit, V, O, R)$ where:

- Σ is the set of events,
- Q is the set of states,
- $Start \in Q$ is the start state,
- $Exit \in Q$ is the exit state,
V is a finite set of variables,
O is the set of actions,
R is the set of transitions, where each transition T is represented by the tuple: \(T = (E, C, A, S_0, S_f) \) where:
\(E \in \Sigma \) is an event,
\(C \) is an enabling condition defined over V,
\(A \) is a sequence of actions, \(A = \langle a_1, a_2, ..., a_j \rangle \), where \(a_i \in O \),
\(S_0 \in Q \) is the transition’s originating state,
\(S_f \in Q \) is the transition’s terminating state.

In addition, the following notation related to a transition T is introduced:
\(S_0(T) \) is the originating state of transition T,
\(S_f(T) \) is the terminating state of transition T,
\(C(T) \) is the enabling condition (a Boolean expression) associated with transition T,
\(E(T) \) is the event associated with transition T,
\(A(T) \) is a sequence of actions associated with transition T.

In \(M, \Sigma \) is a set of events, each of which is an external stimulus (input) that may be associated with a list of arguments; i.e., an event \(E \in \Sigma \) is represented by \(E(\arg_1, \arg_2, ..., \arg_k) \). States in Q are passive elements in the EFSM model. States are just snapshots of the system and they are not involved in any kind of decision-making or computation. The states Start and Exit are where the system starts and terminates, respectively. The variables in V provide storage for values that is accessible by enabling conditions and actions in transitions. An action \(a_i \in O \) is one of the following types: assignment action, output action, or function call. An assignment action assigns a value to a variable. An output action displays a variable or a constant to the external environment. A function call to some function \(f(v_1, v_2, ..., v_k) \) returns the evaluated value.

A transition \(T \) in \(R \) is triggered when the system is in the originating state \(S_0(T) \), the event \(E(T) \) occurs, and the enabling condition \(C(T) \) is evaluated to TRUE. When transition \(T \) is triggered, the \(A(T) \) sequence of actions is performed and the system is transferred to the terminating state \(S_f(T) \). If a transition \(T \) is specified at a state with no enabling condition, no other transition from that state can be associated with \(E(T) \).

EFSM models may be depicted as graphs where states are represented by nodes and transitions by directed edges between states. A simple EFSM model of an ATM system is shown in Figure 2 [9, 17, 27]. This ATM system supports two types of accounts: checking account and savings account and three types of transactions: withdrawal, deposit and balance. Before ATM transactions can be performed, user must enter a valid pin that is matched against the pin stored in an ATM card. A user is allowed a maximum of three attempts to enter the valid pin. For example, transition \(T_2 \) is triggered when the model is in state \(S_1 \), event PIN(p) is received, the value of parameter p does not equal to variable pin, and the value of variable attempts is less than three. When the transition is triggered, an error message is displayed, the value of variable attempts is incremented, and the user is prompted to enter PIN. Notice that in this example, for transition \(T_2 \), \(S_0(T_2) = S_1 \), \(S_f(T_2) = S_1 \), \(C(T_2) = (p != \text{pin}) \) and \(\text{attempts} < 3 \), \(E(T_2) = \text{PIN}(p) \).

In this paper, we assume that the EFSM model is executable [18, 42, 43], i.e., enough detail is provided in the model so that the model executor can execute the model based on the model specification (or an executable program corresponding to the model can be generated from the model specification). In order to support model execution, some actions may not be implemented (they are represented by “empty” actions). However, all actions are implemented during the development of the system. An input to the EFSM is a sequence of events with values for arguments associated with the events. For example, consider the following input for the EFSM of the ATM system of Figure 2:
\(t = \text{Card}(1234,100,200), \text{PIN}(1234), \text{Savings}(), \text{Deposit}(20), \text{Receipt}(), \text{Withdrawal}(50), \text{Receipt}(), \text{Done}(), \text{Exit}() \).

When the model of Figure 2 is executed on the sequence of events \(t \) above, the following sequence of transitions is executed: \(\tau(t) = \langle T_1, T_4, T_9, T_{11}, T_{12}, T_{10}, T_{12}, T_8, T_6 \rangle \).
In this paper, we assume that the EFSM model is deterministic, i.e., for every event \(E_i\) where \(x_i = \text{arg}_1, \text{arg}_2, \ldots \text{arg}_n\), in \(t\) there is one and only one possible execution of model \(M\) (at most one transition is executed for a given event \(E_i\)). When model \(M\) is executed for a given sequence of events \(t = \langle E_1, E_2, \ldots, E_{n}\rangle\), a sequence of transitions \(t (t) = \langle T_1, T_2, \ldots, T_{m}\rangle\) is executed.

Modifications in specifications frequently lead to modifications in system models. Traditionally, a modified model is only used to understand the modifications made in the model. However, developers may have difficulties understanding the effect of modifications on the model and consequently on the system. For example, consider a model of Figure 2, the model is modified by adding a balance transition to the savings account: transition \(T_{18}\). The modified model is shown in Figure 3.

The modification seems to be benign and should not have any effect on the system. Clearly, the developer may have difficulties understanding actual effect of this modification on the system, and, as a result, some undetected problems may be passed to the next phases of the development. Typically, the developer after making a modification to the system model may be interested in answers to the following questions:

- Which parts of the model affect the modification?
- Which parts of the model are affected by the modification?

In the first question, the developer may be interested in model transitions, referred to as affecting transitions that affect the modified part of the model. This may be important to understand whether the modification interacts with expected transitions of the model. For example, Figure 4 shows parts of the model (affecting transitions) that affect the modification, i.e., transition \(T_{18}\) in the modified model of Figure 3. The affecting transitions are shown in bold lines in Figure 4. From Figure 4, the developer may easily identify that transitions \(T_1, T_2, T_9, T_{18}\), and \(T_{11}\) affect the modification as expected. However, transitions \(T_5, T_{13}\), and \(T_{12}\) unexpectedly affect the modification. To a developer, it is not evident how transitions of the checking account may have an effect of the savings accounts.
In the second question, the developer may be interested in transitions, referred to as affected transitions that may be affected by the modification. As a result, the developer may have a better understanding whether the intended transitions of the model are affected. For example, Figure 5 shows parts of the model (affected transitions) that are affected by the modification in the modified model of Figure 3. The affected transitions are shown in bold lines. The developer most likely expects that the modification should not affect any parts of the model. However, the modification unexpectedly affects almost all transitions related to the checking account (T₃, T₄, T₅, T₆, and T₇). In addition, the modification affects transition Tₑ₂.

3 Model dependencies

In order to identify affecting and affected transitions for a model modification, we use model dependence analysis. In this section, we introduce model dependencies that may exist in the system model, specifically in the EFSM model [7, 33]. We define two types of dependencies between transitions (“active” elements of a model): data dependence and control dependence. Note that states are “passive” elements of the model. These dependencies capture the notion of potential “interactions” between transitions in the model.
3.1 Data dependence

Model dependence analysis with respect to data dependence focuses on occurrences of variables within the system model. Each variable occurrence is classified as being a variable definition or a variable use. We refer to these as definition and use, respectively. A definition of a variable \(v \) in a transition is any occurrence of \(v \) at which \(v \) is assigned a value. A transition can define a variable \(v \) by defining \(v \) as a part of the action(s) (e.g., \(v = x + 5 \)). A use of a variable \(v \) in a transition is any occurrence of \(v \) that references the value of \(v \). A transition can reference a variable \(v \) in a Boolean expression associated with the transition (e.g., \([v < 0]\)) or by using \(v \) in action(s) associated with the transition (e.g., \(x = v + 5 \)).

Let \(T \) be a transition. The following concept related to transition \(T \) is introduced:

- \(D(T) \) is a set of variables defined by transition \(T \), i.e., variables defined by an action(s) or by a triggering event of \(T \).
- \(U(T) \) is a set of variables used in transition \(T \), i.e., variables used in a condition and an action(s) of \(T \).

Data dependence captures the notion that one transition defines a value of a variable and another transition may potentially use this value. There exists a data dependence between transitions \(T_i \) and \(T_k \) if transition \(T_i \) modifies the value of variable \(v \), transition \(T_k \) uses \(v \), and there exists a path (transition sequence) in the model from \(T_i \) to \(T_k \) along which \(v \) is not modified [33]. More formally, there exists data dependence between transitions \(T_i \) and \(T_k \) if there exists a variable \(v \) such that: (1) \(v \in D(T_i) \), (2) \(v \in U(T_k) \), and (3) there exists a path (transition sequence) in the EFSM model from \(T_i \) to \(T_k \) along which \(v \) is not modified; such a path is referred to as a definition-clear path. For example, there exists a data dependence between transitions \(T_1 \) and \(T_{11} \) in the model of Figure 2. This is because transition \(T_1 \) assigns a value to variable \(sb \) in the action “\(sb = y \)”, transition \(T_{11} \) uses variable \(sb \) in action “\(sb = sb + 1 \)”, and there exists a path from \(T_1 \) to \(T_{11} \), along which \(sb \) is not modified (sequence of transitions \(T_1, T_6, T_9, T_{11} \)). Notice that there is no data dependence between \(T_1 \) and \(T_{12} \) because along the path from \(T_1 \) to \(T_{12} \), \(sb \) is modified by transitions \(T_{10} \) or \(T_{11} \).

3.2 Control dependence

Control dependence was originally defined for a program’s Control Flow Graph (CFG) [45]. Control dependence captures the notion that one node in the control graph may affect the execution of another node. In this paper, we extended the concept of program control dependence to the EFSM model [9]. Control dependence in an EFSM exists between transitions and it captures the notion that one transition may affect traversal of another transition. Control dependence between transitions is defined similarly to control dependence between nodes of a CFG [45], i.e., in terms of the concept of post-dominance. Let \(Y \) and \(Z \) be two states (nodes) and \(T \) be an outgoing transition (edge) from \(Y \). State \(Z \) post-dominates state \(Y \) if \(Z \) is on every path from \(Y \) to the exit state of the EFSM. State \(Z \) post-dominates transition \(T \) if \(Z \) is on every path from \(Y \) to the exit state of the EFSM through transition \(T \). Transition \(T_j \) is control dependent on transition \(T_i \) iff: (1) \(S_1(T_j) \) does not post-dominate \(S_1(T_i) \) and (2) \(S_0(T_j) \) post-dominates transition \(T_i \). Notice that the definition of control dependence presented in this paper captures the same view as the definition of control dependence between nodes in a CFG [45].

For example, transition \(T_2 \) has control dependence on transition \(T_9 \) in the model of Figure 2 because state \(S_2 \) does not post-dominate state \(S_1 \) (condition 1 of control dependence definition is true) and state \(S_2 \) post-dominates transition \(T_9 \) (condition 2 is TRUE). The issue of control dependence in EFSMs is discussed in more detail elsewhere [46, 48].

3.3 Model dependence graph

Data and control dependence in the model can be graphically represented by a directed graph where nodes represent model transitions and directed edges represent model data and control dependencies. More formally, let \(M = (\Sigma, Q, \text{Start}, \text{Exit}, V, O, R) \) be an EFSM model and let \(G = (R, E) \) be a model dependence graph of model \(M \):

Where:

- \(R \) is a set of nodes (set of transitions)
- \(E \) is a binary relation on \(R, E \subseteq R \times R \), referred to a set of directed edges where: edge \((T_i, T_k) \in E \), if there exists data or control dependence between transitions \(T_i \) and \(T_k \).
Throughout this paper, we will be consistent on using the statement “there exists dependence between transitions T_i and T_k”. It will always mean that T_k depends on T_i (not the opposite), so in the dependence graph, the relation will be represented by the directed edge (T_i, T_k).

Due to space limitation, Figure 6 shows only a partial model dependence graph of the model of Figure 2. Variables associated with data dependencies are also not shown. Note that data dependencies are shown as solid edges and control dependencies are shown as dashed edges.

![Partial Model Dependence graph of the ATM model](image)

4 Effect of modifications

Our approach to support identifying the impact of modifications in system models is based on the observation that usually not the whole system model is affected by the modified part of the model (a modification). Frequently, only a relatively small part of the model is affected by the modification. When a software system is modified two types of analysis can be performed to support understanding the model modifications: identifying the effect of the model on the modification (affecting transitions), and identifying the effect of the modification on the remaining part of the model (affected transitions). In order to identify the effect of a model modification, we compare changes in dependencies between the original model and the modified model. In this section, we formally define “Model Modification”, “Affects Relationship”, “Affecting Transition” and “Affected Transitions”, and then we introduce an algorithm to compare the difference in dependencies between the original model and the modified model. The end results of the algorithm are the set of affecting transitions and the set of affected transitions.

Definition 4.1: For a Model M_o, an elementary modification represents one of the following actions:

1. Deleting an existing transition T where $T \in R$
2. Adding a new Transition T to R

In this context, editing an existing transition $T \in R$ is equivalent to deleting the transition T and adding a new transition T'.

Definition 4.2: For an original Model M_o, a model modification (MF) is represented by two sets: R_d and R_a, where R_d is the set of transitions to be deleted from M_o, and R_a is the set of transitions to be added to M_o. We call the resulting model after applying the model modification on M_o “the modified model M_m”.

Definition 4.3: Let $G=(R, E)$ be the dependence graph of the model M. A transition T in R “affects” another transition T' in R if and only if there is a non-null path from T to T' in G.

Since the dependence relationship itself is not transitive, then we can look at the “affects” relationship as the transitive relation of the dependence relation between transitions. For example, if transition T depends on transition Q, and transition Q depends on transition S, then S “affects” T.

Definition 4.4: Let $G=(R, E)$ be the dependence graph of the model M. The set of affecting transitions for a transition T in G is the set of all transitions T' that “affects” the transition T. Formally, we define this set as:
\[AG(T) = R', \text{ where } R' \subseteq R, \text{ and } T' \in R' \text{ if and only if "T" affects } T \text{ " on } R. \] (4)

Definition 4.5: Let \(G=(R, E) \) be the dependence graph of the model \(M \). The set of affected transitions for a transition \(T \) in \(G \) is the set of all transitions \(T' \), where \(T \) “affects” \(T' \). Formally, we define this set as:

\[AD(T) = R', \text{ where } R' \subseteq R, \text{ and } T' \in R' \text{ if and only if "T affects } T' \text{ " on } R. \] (5)

Definitions 4.4 and 4.5 present an understanding of “affected transitions” and “affecting transitions” as a function of a specific transition of interest \(T \). In this paper however we are more interested in understanding the effect of the whole modification of the model rather than the effect of a single transition. Therefore, in the remaining of this section we formalize our understanding of affecting and affected transitions as a function of model modification \(MF \) instead of a transition \(T \).

4.1 Identifying affecting transitions

Introducing a model modification to an original model \(M_o \) produces a modified model \(M_m \). To understand the effect of the modification, we analyze the dependence graph of the original model \(G_0=(R_o, E_o) \), and compare it with the dependence graph of the modified model \(G_m=(R_m, E_m) \).

We have defined model modification in definition 4.2 as two sets: the set of added transitions \(R_a \), and the set of deleted transition \(R_d \). To understand what parts of the model have an impact on the modified part of the model \(MF \), we focus on the transitions affecting the added transitions. As for deleted transitions, they can no longer be affected by other transitions in the model since they have been deleted, however, their deletion may affect the model. Consequently, we can derive the set of transitions affecting the model modification by looking at \(R_a \). We investigate the impact of the deletion of transitions in \(R_d \) as part of the effect of the modification on the model.

Definition 4.6: Let \(G_m=(R_m, E_m) \) be the dependence graph of the modified model \(M_m \). The set of affecting transitions for a model modification \(MF \) on \(M_o \) is the Union of \(AG(T) \) for all transitions \(T \in R_a \). Formally, we define the affecting transitions for a model modification as follows:

\[AG(MF) = \bigcup_{T \in R_a} AG(T) \] (6)

For example, suppose a developer is interested in understanding the modification of adding transition \(T_{18} \) in the model of Figure 2, which results in the model of Figure 3. Figure 7 shows a dependence sub-graph with respect to added transition \(T_{18} \) of the model of Figure 3. All transitions in this sub-graph affect \(T_{18} \) and are highlighted in the modified model as shown in Figure 4.

4.2 Identifying affected transitions

Identifying transitions affected by the modification is more complex than identifying transitions affecting the modification. This is true mainly because we need to look at both \(R_a \) and \(R_d \) in order to understand the impact of the modification on the original model \(M_o \). In this section, we identify five cases covering all possible changes in the dependence graph that may be caused by the addition of a new transition or the deletion of a transition. The first three cases discuss the possible impact of adding a new transition, while the last two cases discuss the possible impact of deleting a transition.
Case 1: When a new transition is added, it will have a direct impact on the transitions that will be involved in a dependence relation in G_m with the added transition. In other words, we say that an added transition T has an impact on a transition Q, if there exists an edge $(T, Q) \in E_m$, where $Q \in R_m$. For example, Figure 8 shows a dependence sub-graph with respect to added transition T_{18} of the model of Figure 3 after forward traversal starting from T_{18}. All transitions in this sub-graph are affected by T_{18}.

![Fig. 8 Model dependence sub-graph that is affected by added transition T_{18}](image)

Case 2: When a new transition is added, new dependencies between existing transitions may be introduced. For example, the new transition may create a definition-clear path between other existing transitions. This path will lead to new dependencies in G_m that didn’t exist in G_m. In this case, the added transition will have an indirect impact on the transitions involved in the new dependencies. Mainly, an added transition T has an impact on a transition Q if there exists an edge $(S, Q) \in E_m$ where $edge(S, Q) \in E_m$ and $S, Q \in R_m$. For example, in the original model of Figure 2, there is no dependence between T_1 and T_{12}. However, when transition T_{18} is added into the model of Figure 3, transition T_{12} becomes data dependent on transition T_1 in the modified model.

Case 3: When a new transition is added, it may break a dependency relation between two transitions. As a result, a previously existing dependence relation in G_m may cease to exist in G_m. Consequently, transitions which were involved in a dependence relation in G_m but are no longer involved in this dependence relation in G_m are indirectly affected by the addition of the new transition. An added transition T has an impact on a transition Q if there exists an edge $(S, Q) \in E_m$, where $edge(S, Q) \in E_m$ and $S, Q \in R_m$. For example, assume that figure 9 is the original ATM model, and suppose that transition T_{17} is added to the model resulting in the model of Figure 3. Adding transitions T_{17} breaks the dependency between T_1 and T_{18} in the original model of Figure 9. We notice that this dependency between T_1 and T_{18} doesn’t exist anymore in the modified model of Figure 3. Clearly, T_{16}, the dependent transition, may behave differently because of the modification.

Case 4: When a transition is deleted, it will have direct impact on the transitions that were previously involved in a dependence relation with the deleted transition. These transitions may have dependence relation on other transitions in M_m. Thus, a deleted transition T will have an impact on a transition Q if there exists an edge $(T, Q) \in E_m$ where $Q \in R_m$ and $T \in R_m$. For example, consider the model of Figure 3. Suppose transition T_{17} is deleted from this model, resulting in the model of Figure 9. The modification is a deletion of transition T_{17}. In the original model of Figure 3, there is a data dependence between transition T_{17} and T_{18}, T_{13}, and T_{18}. Clearly, these transitions are affected by deletion of T_{17}.

Case 5: When a transition is deleted, it may delete a definition-clear path between two transitions. In this case, the dependence relation between existing transitions may cease to exist after applying the modification. This case has the same effect as case 3 although the cause is different. A deleted transition T has an indirect impact on a transition Q if there exists an edge $(S, Q) \in E_m$, where $edge(S, Q) \in E_m$ and $S, Q \in R_m$. For example, consider the original model of Figure 2, suppose that transition T_{17} is deleted from this model resulting in the model of Figure 9. The modification consists of the deletion of transition T_{17}. We notice that the dependence relation between T_1 and T_{18} in the original model M_m cease to exist in modified model M_m. Clearly, T_{18} may behave differently because of this modification.
The above five cases identify all possible sets of transitions on which the model modification will have a direct or an indirect impact. The model modification doesn’t only affect the transitions identified in these five cases, but it also affects all transitions affected by these identified transitions as well. The formal definition of the set of affected transitions for a model modification is:

Definition 4.7. Let \(C_i, C_2, C_3, C_4\) and \(C_5\) represent the sets of transitions identified in the above five cases. Let \(G=(R, E)\) be the dependence graph of the model \(M\). The set of affected transitions for a model modification \(AD(MF)\) on \(M\) is the Union of \(AD(Q)\) for all transitions \(Q \in (C_1 \cup C_2 \cup C_3 \cup C_4 \cup C_5)\).

\[
AD(MF) = \bigcup AD(Q), \text{ for all } Q \in (C_1 \cup C_2 \cup C_3 \cup C_4 \cup C_5). \tag{7}
\]

4.3 Algorithm to compute affected and affecting transitions

In this section, we present an algorithm to compute affecting transitions and affected transitions for any complex model modification. The algorithm is shown in Figure 10. The algorithm uses the original model \(M_o\) and the modified model \(M_m\) and automatically identifies the difference between these models, where the difference between two models represents the model modification \(MF\). This difference between the two models \(M_o\) and \(M_m\) is represented by the set \(R_o\) of added transitions and the set \(R_d\) of deleted transitions. A transition addition may occur between existing states or may involve an introduction of a new state when a transition is added to the model. Similarly, a transition deletion may, in some cases, result in the deletion of a state. Notice, however, that an addition of a new state and a deletion of a state are always associated with a transition addition and a transition deletion. Therefore, addition of a new state or a deletion of a state is not considered as an elementary modification. For example, the difference between the original model of Figure 2 and the modified model of Figure 3 is \(R_o=\{T_{12}\}\) and \(R_d=\{\}\). On the other hand, the difference between the original model of Figure 2 and the modified model of Figure 9 is the following elementary modifications: deletion of transition \(T_{17}\) and addition of transition \(T_{18}\), i.e., \(R_o=\{T_{18}\}\) and \(R_d=\{T_{17}\}\). After the difference between models is identified, the algorithm uses the dependence graph of both the original model and the modified model to compute the affecting transitions for all added transitions in \(R_o\). The algorithm then computes the set of affected transitions based on both \(R_o\) and \(R_d\).

In line 1, the algorithm computes the difference between the original model \(M_o\) and the modified model \(M_m\), i.e., sets \(R_o\) and \(R_d\). The algorithm used to compute the difference between the two models is straightforward [17, 28, 43], hence modifications in terms of the added and deleted transitions can be devised as follows. Let \(R_o\) be a set of transitions of \(M_o\) and \(R_d\) be a set of transitions of \(M_m\). The algorithm then amounts to taking two set differences between \(R_o\) and \(R_d\) provided that the state and transition names are preserved across versions of the models. That is, only previously unused state and transition names appear in the modified model \(M_m\) for the added states and transitions, then the algorithm becomes the following:

\[
R_o = R_m - R_o \\
R_d = R_o - R_m
\]

The complexity of this algorithm is at most, \(4^*|R_o| + |R_m|\)-1 comparisons provided that the sets \(R_o\) and \(R_m\) are sorted in the same order over the transition names [50].
Input: Original model M_o and modified model M_m

Output: Set A of affecting transitions and set B of affected transitions

R_d, R_a

- R_d is a set of transitions deleted from M_o and R_d is a set of transitions added to M_o resulting in M_m

T, Q

- Transitions

G_m

- model dependence graph of M_m

G_o

- model dependence graph of M_o

1. Compute set R_d of deleted transitions from M_o and set R_a of added transitions to M_o resulting in M_m

2. Compute model dependence graph G_o for M_o

3. Compute model dependence graph G_m for M_m

4. $A = \emptyset$

5. Set all nodes (transitions) in G_m as unmarked

6. for all $T \in R_d$ do Mark T in G_m

7. while there is a marked node (transition) in G_m do

8. Select marked transition T in G_m

9. Set T as visited

10. if $T \in R_a$ then $A = A \cup \{T\}$

11. for all transitions Q in G_m such that Q is not set as visited or marked do

12. if there is a dependence between Q and T in G_m then Mark Q in G_m

endfor

endwhile

15. $B = \emptyset$

16. Set all nodes (transitions) in G_m as unmarked

17. for all $T \in R_d$ do Mark T in G_m

18. for all $Q \in R_d$ do

19. for all transitions T in G_m do

20. if there is a dependence between Q and T in G_o then Mark T in G_m

endfor

endfor

24. for every pair (T, Q) of transitions in M_m where $T \neq Q$ and $T, Q \notin R_d$ do

25. if (there is a dependence between T and Q in G_m) and (there is no dependence between T and Q in G_o) then Mark Q in G_m

26. if (there is a dependence between T and Q in G_o) and (there is no dependence between T and Q in G_m) then Mark Q in G_m

endfor

30. while there is a marked transition in G_m do

31. Select marked T in G_m

32. Set T as visited

33. if $T \in R_d$ then $B = B \cup \{T\}$

34. for all transitions Q in G_m such that Q is not set as visited or marked do

35. if there is a dependence between T and Q in G_m then Mark Q in G_m

endfor

endwhile

38. Display affecting transitions of A in G_m

39. Display affected transitions of B in G_m

Fig. 10 Algorithm to compute affecting and affected transitions
In lines 2 and 3, the model dependence graph G_o of the original model and the model dependence graph G_m of the modified model are computed respectively.

In lines 4-15, the algorithm computes set A of affecting transitions defined as $AG(FM)$ in definition 6. Initially, all added transitions in R_a are marked in the model dependence graph G_m (line 6). In the while-loop (lines 7-15), the algorithm traverses backwards the model dependence graph G_o, for each marked transition. In lines, 11-14, transitions Q for which there exists data or control dependence between Q and T in G_m are marked as well. At the termination of the while loop (lines 7-15) set A contains affecting transitions $AG(FM)$.

In lines 16-39, the algorithm computes set B of affected transitions defined as $AD(FM)$ in definition 7. In this part of the algorithm we can identify two phases, the marking phase (lines 17-30), and the forward traversal phase (lines 31-39). In the marking phase, the algorithm identifies all transitions on which the model modification will have a direct or an indirect impact (as specified in the five cases presented in section 5.2). In the forward traversal phase, the algorithm traverses all marked transitions in order to compute $AD(FM)$ as defined in definition 7.

In the marking phase, the algorithm starts by marking all transitions in R_a (line 18), this will take care of all transitions related to case 1. Forward traversal of these marked transitions will identify the set of affected transitions for each transition Q in R_a ($\cup AD(Q)$ where $Q \in C1$). In lines (21-22), the algorithm marks all transitions Q if there exists data or control dependence between Q and at least one deleted transition in R_p. This part of the algorithm takes care of the transitions related to case 4. The forward traversal of these transitions will identify the set of affected transitions for each transition $Q \in C4$. In lines (26-27), the algorithm marks transitions involved in new dependencies that do exist in the modified model but do not exist in the original model. These are the transitions related to case 2.

Forward traversal of these transitions will identify the set of affected transitions for each transition $Q \in C2$. In lines (28-29), the algorithm marks transitions involved in dependencies that cease to exist, i.e., dependencies that do exist in the original model but do not exist in the modified model. These transitions are related to case 3 and case 5. Forward traversal of these transitions will identify the set of affected transitions for each transition $Q \in (C3 \cup C5)$. By the end of the forward traversal phase, set B contains all transitions affected by the model modification $AD(MF)$.

5 Empirical study

The goal of this empirical study is to verify that the average size of the set of affecting transitions $AG(FM)$ and affected transitions $AD(MF)$ for a model modification is relatively smaller than the size of the original model in terms of number of transitions. The smaller the size of these sets is, the more practical they can be used by the developer. In this case, after a model is modified, it will be enough for the developer to validate only the transitions within these sets without having to look at all transitions of the modified model. Notice that in the worst case scenario the size of $AG(FM)$ is the same as the size of M, and the size of $AD(MF)$ is the same as the size of M. We want, however, in this experiment to verify that the average size of these sets is reasonably smaller than the size of M.

For this experiment, we have used six EFSM models. Due to the unavailability of system models for real world commercial software, we used EFSM system models that are in the public domain for the empirical study. These EFSM models are: an ATM model [10, 11, 53], a cruise control model [45], a fuel pump model [46], the Transfer Control Protocol-communication dialer (TCP) [44], Print-Token [24], and the Integrated Service Digital Network (ISDN) protocol [47]. The sizes of models range from 5 to 20 states and 20 to 89 transitions. The details about the models are shown in Table 1.

<table>
<thead>
<tr>
<th>Model Name</th>
<th>TN</th>
<th>SN</th>
<th>NV</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM</td>
<td>28</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Cruise Control</td>
<td>20</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>Fuel Pumps</td>
<td>16</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>TCP-Dialer</td>
<td>50</td>
<td>17</td>
<td>31</td>
</tr>
<tr>
<td>ISDN</td>
<td>92</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>Print Token</td>
<td>98</td>
<td>11</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TN: number of transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN: number of states</td>
</tr>
<tr>
<td>NV: number of variables</td>
</tr>
</tbody>
</table>

Our approach in this experiment is as follows: For a given model M of size n, we run n iterations of what-if-analysis using a tool that we developed for the purpose of this experiment. In each iteration, we consider a single transition in the model, and we analyze what-if this transition is edited. In this context, we consider editing a transition equivalent to
deleting the transition, and adding a new transition. Therefore, for a single iteration of the analysis, \(R_t \) will contain one deleted transition, and \(R_a \) will contain one added transition. The result of a single stage of analysis is the set of affecting transitions \(AG(MF) \) and the set of affected transitions \(AD(MF) \).

The analysis we apply distinguishes between data dependence and control dependence. As a result, for each iteration of the analysis nine sets of transitions are generated: \(AD_b, AD_c, AD_{cd}, AG_b, AG_c, AG_{cd}, AGD_b, AGD_c, AGD_{cd} \) where:

- \(AD_b \) is the set of affected transitions, \(AD(MF) \), considering only data dependence,
- \(AD_c \) is the set of affected transitions, \(AD(MF) \), considering only control dependence,
- \(AD_{cd} \) is the set of affected transitions, \(AD(MF) \), considering both data and control dependence,
- \(AG_b \) is the set of affecting transitions, \(AG(MF) \), considering both data and control dependence,
- \(AG_c \) is the set of affecting transitions, \(AG(MF) \), considering only control dependence,
- \(AG_{cd} \) is the set of affecting transitions, \(AG(MF) \), considering only data dependence,
- \(AGD_b \) is the union of affecting and affected transitions, considering only data dependence (\(AD_b \cup AG_b \)),
- \(AGD_c \) is: the union of affecting and affected transitions, considering only control dependence (\(AD_c \cup AG_c \))
- \(AGD_{cd} \) is: the union of affecting and affected transitions, considering both data and control dependence (\(AGD_b \cup AGD_c \))

By the end of all \(n \) iterations of the analysis, we obtain a size matrix, \(S \), summarizing the \(n \) assumed model modifications. The size matrix is \(n \times 9 \), where \(n \) is the number of transitions in the input model, and 9 is the number of sets obtained in each iteration of the analysis. One row in this matrix represents one iteration of the analysis. A row has 9 values, each value represents the size of one of the resulting sets. For example, in the size matrix \(S \), the value of the entry \(S_{ik} \) will represent the size of the \(k \)th resulting set of the \(i \)th iteration of the analysis. In this case, the value is the size of the set of affecting transitions for control dependence: \(|AD_b| \), assuming a modification in transition \(T_i \) of the input model. Table 2 represents the size matrix obtained for the fuel pump model.

Table 2: Size of affecting and affected transitions for fuel pump model

<table>
<thead>
<tr>
<th></th>
<th>Affecting AG(MF)</th>
<th>Affected AD(MF)</th>
<th>AG(MF) U AD(MF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>0.00</td>
<td>0.31</td>
<td>0.31</td>
</tr>
<tr>
<td>T2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>T3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>T4</td>
<td>0.00</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>T5</td>
<td>0.00</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>T6</td>
<td>0.06</td>
<td>0.31</td>
<td>0.38</td>
</tr>
<tr>
<td>T7</td>
<td>0.06</td>
<td>0.19</td>
<td>0.38</td>
</tr>
<tr>
<td>T8</td>
<td>0.06</td>
<td>0.19</td>
<td>0.25</td>
</tr>
<tr>
<td>T9</td>
<td>0.00</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>T10</td>
<td>0.44</td>
<td>0.44</td>
<td>0.56</td>
</tr>
<tr>
<td>T11</td>
<td>0.13</td>
<td>0.25</td>
<td>0.38</td>
</tr>
<tr>
<td>T12</td>
<td>0.44</td>
<td>0.44</td>
<td>0.63</td>
</tr>
<tr>
<td>T13</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>T14</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>T15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>T16</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Avg</td>
<td>0.11</td>
<td>0.16</td>
<td>0.16</td>
</tr>
</tbody>
</table>

The size is expressed as a percentage of the total size of the model. Looking at transition \(T_k \), we notice that the values of the first three columns are zeros, which means that there are no transitions affecting a model modification involving only transition \(T_k \). On the other hand, 25% of the transitions in the model will be affected by the modification (considering data dependence), and 38% of the transitions in the model will be affected by the modification (considering control dependence). This leads to a combined total of 56% of the transitions affected by the modification (either based on data dependence or control dependence). We notice that the size of \(AG_{cd} \) is not exactly equal to the sum of \(|AG_b| \) and \(|AG_c| \) since some transitions are included in both sets \((AG_b \text{and } AG_c) \). Looking at column \(AGD_{cd} \), the worst case modification scenario is for transition \(T_k \) with 63% of the transitions either affecting the modification or affected by the modification. Namely, 31% (5 out of 16) of the transitions are affecting the modification, and 38% (6 out of 16) of the transitions are affected by the modification.

It is worth mentioning here that the average of affecting and affected transitions for the whole model is the same since the “affects” relationship is a binary bidirectional relation. So, whenever the relation “\(T_i \) affects \(T_j \)” appears in the model, we get \(T_i \) in the set of affecting transitions for \(T_j \), and we get \(T_j \) in the set of affected transitions for \(T_i \).
To better understand the analysis results, box-plots of the average size values for each model modification of each EFSM model are shown in figure 11. Additionally, the last box-plot BP#7 represents the cumulative average size values for all modifications in all EFSM models.

Fig. 11 Box-plots of the affected parts of the models
The analysis results represented in all of the seven box plots indicate that our approach significantly help developers identifying the effect of the model on the modification $\text{AG}(\text{FM})$, and identifying the effect of the modification on the remaining part of the model $\text{AD}(\text{FM})$. Looking at BP#7, AG_{cd} shows that only 25% (the third quartile) of the model modifications are affected by more than 53% of the transitions in M. Another 25% (the second quartile) of the modifications are affected by more than 28% of the transitions in M (but less than 53%), and the remaining 50% of the modifications are affected by less than 28% of the transitions in M.

Looking at AD_{cd}, we notice that 25% of the model modifications (the third quartile) are affecting more than 86% of the transitions on M, another 25% of the model modification (the second quartile) are affecting less than 86% of the transitions in M, and the remaining 50% of the modifications are affecting less than 10% of the transitions in M. These numbers indicate that, excluding the top 25% transactions of a model, the developer can look at a considerably smaller dependence graph when testing the model after a modification.

Table 3 summarizes the average size of the sets of affecting and affected transitions for all model modifications applied on all six models.

<table>
<thead>
<tr>
<th>Models</th>
<th>Affecting $\text{AG}(\text{MF})$</th>
<th>Affected $\text{AD}(\text{MF})$</th>
<th>$\text{AG}(\text{MF}) \cup \text{AD}(\text{MF})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM</td>
<td>0.16 0.06 0.21 0.16 0.06 0.21</td>
<td>0.21 0.11 0.32</td>
<td></td>
</tr>
<tr>
<td>Fuel Pump</td>
<td>0.1 0.07 0.16 0.1 0.07 0.16</td>
<td>0.2 0.14 0.32</td>
<td></td>
</tr>
<tr>
<td>Cruise Control</td>
<td>0.25 0.28 0.48 0.25 0.28 0.48</td>
<td>0.4 0.44 0.59</td>
<td></td>
</tr>
<tr>
<td>Print Token</td>
<td>0.03 0.48 0.49 0.03 0.48 0.49</td>
<td>0.04 0.67 0.68</td>
<td></td>
</tr>
<tr>
<td>TCP</td>
<td>0.08 0.16 0.22 0.08 0.16 0.22</td>
<td>0.14 0.32 0.41</td>
<td></td>
</tr>
<tr>
<td>ISDN</td>
<td>0 0.28 0.28 0 0.28 0.28</td>
<td>0 0.48 0.48</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>0.1 0.22 0.31 0.1 0.22 0.31</td>
<td>0.17 0.36 0.47</td>
<td></td>
</tr>
</tbody>
</table>

Figure 12 represents Box plot for the data in table 3. From AGD_{cd}, we can conclude that on average, 25% of the modifications (third quartile) are affecting/affected by 56% to 68% of the transitions in M. Another 25% of the modifications (second quartile) are affecting/affected by 44% to 55% of the transitions in M. Another 25% of the modifications are affecting/affected by 31% to 43% of the transitions in M. The last 25% of the modifications affect/are affected by less than 31% of the transitions in M.

The significance of our approach becomes more evident when we categorize transitions of an EFMS model into four categories: high-impact transitions, medium-impact transitions, low-impact transitions, and no impact transitions. These categories are based on the number of affecting transitions and affected transitions expressed as: $|\text{AG}(\text{MF}) \cup \text{AD}(\text{MF})|$. Table 4 declares the boundaries of each category. According to table 4, a transition is categorized as high-impact transition if modifying the transition generates a set of affecting/affected transitions $\geq 60\%$ of the original size of the model.
Table 4 High-impact, medium-impact, low-impact, and no-impact transitions

<table>
<thead>
<tr>
<th>Category</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-impact</td>
<td>(</td>
</tr>
<tr>
<td>Medium-impact</td>
<td>(</td>
</tr>
<tr>
<td>Low-impact</td>
<td>(</td>
</tr>
<tr>
<td>No-impact</td>
<td>(</td>
</tr>
</tbody>
</table>

Figure 13 categorizes all transitions of the six models according to the impact of the modification. We can clearly see that cumulatively, less than 40% of the transitions are categorized as high-impact transitions, which means that for the remainder of the transitions the developer will be able to validate a change by looking at a sub-graph of less than <60% of the original size of the model.

6 Related research

There has been a significant amount of research that uses system model for several applications such as: managing requirements changes [48], regression testing [3, 4, 7, 26], model slicing [34, 46, 47], and test prioritization and reduction [36, 50]. Korel and Tahat [43] presented an approach toward understanding modifications on model-based systems. The approach uses the original and the modified models to automatically identify the difference between them. The modification in the model might be as a result of maintenance, error correction, or a change in functionality driven by a change in requirements. This paper is an extension to Korel et al.’s work on understanding model modifications. In this paper, we have formally defined “model modification”, and we have formally defined the relationship “affects” which is the core concept toward understanding the effect of model modifications. We have explored different possible cases of model modifications, where each case focuses on a specific effect of the modification. Finally, we performed an empirical study involving six EFSM system models to show the effectiveness of our approach.

Lin et al. [48] introduced a technique for a requirement change management. Requirements change management is one of the most difficult problems to deal with in requirements tracking. They proposed a set of algorithms for managing all possible automatic requirements changes. Their approach used state machines to model and manage requirements changes.

Briand et al. [1] introduced a Regression Test Selection Tool which used systems modeled in UML. More recently, this work has been developed and extended into a comprehensive study of the regression test selection problem for UML [2]. Orso et al. [3] presented two regression test selection techniques for component-based systems, using component metadata to support the identification of selective subsets of tests to be used in efficient re-testing strategies. Their approach was illustrated in terms of component-based systems specified as UML statecharts and was evaluated using two real world java systems. Their approach used state based models, similar to our approach. Farooq et al. [4] also recently presented a regression test selection approach based on changes identified in both the statecharts and class diagrams of the UML.
Wu and Offutt [5] presented retesting strategies for UML, based on a differencing approach that identified the modified parts of the new model. Similar to our work, Wu and Offutt also incorporated the tracing of data dependence based changes in their work. Pilskalns et al. [6] presented a safe and efficient re-test strategy based on UML model level changes, illustrating their approach with a case study of an open source system called Batik. Their work is concerned with regression testing the model itself.

Korel et al. [7] presented methods of test prioritization based on the state-based model of the system under test. These methods assumed that the modifications were made on both the system under test and its model. The existing test suite was executed on the system model and information about this execution was used to prioritize tests. Korel et al. extended their research on model-based prioritization for a class of modifications for which models were not modified (only the source code is modified) [8, 9]. Several model-based test prioritization heuristics were introduced. Their major motivations for these heuristics were simplicity and effectiveness in early fault detection. The results of their study suggested that system models might improve the effectiveness of test prioritization with respect to early fault detection. Korel et al. [10] proposed simple model-based test prioritization heuristics. The major stress was on simplicity. These simple heuristics have shown promise when a large number of transitions was modified. However, for small modifications the performance of these heuristics could be equivalent to the selective prioritization -Version II.

Korel et al. [34] presented a technique for slicing EFSMs that used data and control dependence for EFSM. They first constructed a dependence graph by using dependence relations. Then the algorithm started from the node in the dependence graph representing the slicing criterion and nodes (i.e. transitions) that were backward reachable from the slicing criterion in the dependence graph were marked in the slice. Once the transitions in the slice have been marked, Korel et al. [34] have implemented different algorithms for automatically reducing the size of an EFSM slice.

7 Conclusion and future work

In this paper, we have presented an approach toward understanding modifications in model-based systems. The approach can be used for any modification of the system model. The goal is to identify these parts of the model that may exhibit different behavior because of the modification. The approach uses the original model and the modified model and automatically identifies a difference between these models. Our introduced approach uses model-based dependence analysis to identify the affected parts of the model and the parts that may affect the modified transitions. Our empirical study shows that this approach helps developers in understanding the effect of model modification by providing them with a set of affecting transitions and a set of affected transitions with a significantly smaller number of transitions compared to the total number of transition in the model. During evolutionary software maintenance, system models are modified to fix defects, to enhance or change functionality, to add new functionality, or to delete the existing functionality. The presented approach does not only help in understanding the impact of the modification on the system, but also facilitates isolating parts of the modified model that may contribute to a faulty behavior. We have developed a tool to compute the parts of the model that are affected by the modification and the parts of the model that affect the modification. Additionally, the tool generates subsets of affected/affecting transitions based on the type of dependency.

The results of the empirical study indicate that our presented approach may significantly help in understanding the effect of modifications on the system. In the future, we plan to perform an experimental study in which we will investigate advantages and limitations of the presented approach in understanding modifications of large state-based models. In addition, we plan to investigate the mapping between the source code of the system and the model.

References

