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Abstract 
 

This Paper deals with the effects of the radiation pressure and triaxiality of primaries on the stability of infinitesimal motion about trian-

gular equilibrium points [𝐿4, 𝐿5] in the elliptical restricted three body problem (ER3EB) around binary system. For determining the char-

acteristic exponents of variational equations with periodic coefficient, we have used analytical method, described by Bennet in [3, 4]. 

This analytical method is based on Floquet’s theory. The stability of equilibrium points has been discussed under the assumption thatboth 

the primaries are radiating and triaxial. For this we have drawn transition cureves in μ-e plane. And it is seen that system is stable outside 

the transition curves, while system is Unstable within the transition curves. 

 
Keywords:ER3BP; Dynamical System Libration Points; Flouqet Theory. 

 

1. Introduction 

The restricted three- body problem has a wider range of applica-

tion that the general three body problem in space dynamics, celes-

tial mechanics and analytical dynamics. The elliptical restricted 

three body problem (ER3BP) models the motion of infinitesimal 

mass which moves under the influence of two massive bodies 

revolving around their centre of mass in an elliptical orbit, being 

influenced but not influencing the two primaries. The circular 

restricted three body problem has been generalized by the intro-

duction of the elliptic orbit, thus improving its applicability and 

retaining some useful properties of the circular model suitable to 

the elliptic case. Various authors and researchers like Ammar 

[1] ,Grebnikov [7],Gyorgyey [8], Kumar, S., Ishwar B [9], Kumar, 

V., Choudhary , R. K. [10] , V. V., Perdios, E., Labrapoulou, 

P.[11], Moulton, F.R.[12], Narayan, A., Kumar, C.R.[13], Nara-

yan, A., Singh, N.[14], Narayan, A., Usha, T.[15] , Singh, J., 

Aishetu, U. (2012), Singh, J., Aishetu, U.[18], Szebebely, 

V .[20],Usha, T., Narayan, A., Ishwar, B. [21],Zimvoschikov, 

A.S., Thkai, V.N.[22] , have studied the effects of radiation pres-

sure on the motion of the infinitesimal body by taking one or both 

primaries as a source of radiation. 

Danby [5] examined the stability of the infinitesimal motion about 

the triangular points in the ER3BP; using a digital computer nu-

merical scheme based on Floquet theory giving the result in the 

form of transition curves in μ − e plane. Bennet [3,4] further stud-

ied the problem by taking the characteristics exponents of the five 

equilibrium points in elliptical restricted problem. This method is 

essentially the same as employed by Moulton, F.R.[12] in his 

classical study of eight satellite of Jupiter.Alfriend, K.T., Rand, R. 

H. [2] investigated the same problem using two variable expansion 

methods and verified the result of Danby [5]. Further,Deprit, A., 

Rom, A. [6] used the perturbation method based on Lie transform 

to develop the characteristics exponents of the monodromy matrix 

in power series of small parameter. They produced the principal 

parts of the characteristics exponents as general functions of mass 

ratio. 

The present study is devoted to the analysis of the stability of tri-

angular points under radiating and triaxial primaries by exploiting 

the analytical technique developed by Bennet [3,4]. This method 

is based on Floquet’s theory for the determination of characteris-

tics exponents for a system with periodic coefficients. The transi-

tion curves have been presented through the simulation technique, 

which shows the region of stability as well as instability for differ-

ent values of radiation pressures and triaxial parameters. 

2. Variational equation of motion 

The differential equations of motion of the infinitesimal mass in 

the elliptical restricted three body problem (ER3BP) under radiat-

ing and triaxial primaries in a barycentric, pulsating system are 

given as: Narayan,A., Pandey, K.K and Shrivastava,S.K. [17]. 

The differential equation of motion of the third body P in non-

dimensional barycentre, pulsating and non-uniformly rotating 

coordinate system (x, y) is written in the form: 

x′′ − 2 y′ =
1

1 + ecos ν
(
∂Ω

∂x
) 

 

y′′ + 2 x′ =
1

1+ecos ν
(
∂Ω

∂y
)                                                           (2.1) 

Where ′ denotes differentiation with respect to ν, and 

 

Ω =
x2+y2

2
+

1

n2 [
(1−μ)q1

r1
+

μq2

r2
+

(1−μ) (2σ1−σ2)q1

2r1
3 +

μ (2σ1
′−σ2

′)q2

2r2
3 −

 3(1−μ)(σ1−σ2)y
2q1 

2r1
5 −

 3μ (σ1
′−σ2

′)y2q2

2r2
5 ]                                         (2.2) 

Where 
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n2 = 1 +

3

2
(2σ1 − σ2) +

3

2
(2σ1

′ − σ2
′ )(2.3) 

 

r1
2 = (x + μ)2 + y2 

 

r2
2 = (x + μ − 1)2 + y2                                                         (2.4) 

 

Where 

 

μ =
m2

m1 + m2
 

 

Where m1 and m2 are masses of the primaries. q1 , q2are the radi-

ation pressure.σ1 , σ2, σ1
′  and σ2

′ are triaxial parameters, while e 

and ν are the eccentricity of orbits and true anomaly of the prima-

ries respectively. 

The coordinates of the triangular points L4  and L5  are given by 

Narayan, A., Pandey, K.K and Shrivastava,S.K. [17]. 

 

x =  
1

2
− μ +

(ϵ2
′ −ϵ1

′ )

3
+ [

−3

8
− ϵ1

′ −
(1−μ)

2μ
+

(1−μ)ϵ1
′

2μ
] σ1 +

[
7

8
+

ϵ1
′

2
+

(1−μ)

2μ
−

(1−μ)ϵ1
′

2μ
] σ2 + [

3

8
−

3μ

8(1−μ)
+

3μϵ2
′

8(1−μ)
+ ϵ2

′ ] σ1
′ +

[
−7

8
+

7μ

8(1−μ)
−

7μϵ2
′

8(1−μ)
−

ϵ2
′

2
] σ2

′  

 

 y = ±
√3

2
[1 +

2

3
{−

(ϵ1
′ +ϵ2

′ )

3
+ [

−19

8
− ϵ1

′ +
(1−μ)

2μ
−

(1−μ)ϵ1
′

2μ
] σ1 +

[
15

8
+

ϵ1
′

2
−

(1−μ)

2μ
+

(1−μ)ϵ1
′

2μ
] σ2 + [

−19

8
−

3μ

8(1−μ)
+

3μϵ2
′

8(1−μ)
− ϵ2

′ ] σ1
′ +

[
15

8
+

7μ

8(1−μ)
−

7μϵ2
′

8(1−μ)
+

ϵ2
′

2
] σ2

′}]                                                (2.5) 

Now the equation of motion around the equilibrium points L4 are 

given by 

 

 ξ′′ − 2 η′ =  ∅ [ ξ Ωxx
0 + η Ωxy

0 ]                                                 (2.6) 

 

η′′ + 2 ξ′ = ∅ [ξ Ωyx
0 + η Ωyy

0  ]                                                  (2.7) 

 

Whereξ , η denote small displacement in (x0 , y0). 

 

Then x = x0 + ξ , y =  y0 +  η                                                    (2.8) 

 

Differentiating we get: 

 

x′ = ξ′ , y′ = η′ 

 

And 

 

x′′ = ξ′′ , y′′ = η′′                                                                       (2.9) 

 

Where 

 

∅ = [
1

1+ecos ν
]                                                                           (2.10) 

 

The coordinates of equilibrium points are given by 

 

x0 = 
1

2
− μ +

(ϵ2
′ −ϵ1

′ )

3
+ [

−3

8
− ϵ1

′ −
(1−μ)

2μ
+

(1−μ)ϵ1
′

2μ
] σ1 +

[
7

8
+

ϵ1
′

2
+

(1−μ)

2μ
−

(1−μ)ϵ1
′

2μ
] σ2 + [

3

8
−

3μ

8(1−μ)
+

3μϵ2
′

8(1−μ)
+ ϵ2

′ ] σ1
′ +

[
−7

8
+

7μ

8(1−μ)
−

7μϵ2
′

8(1−μ)
−

ϵ2
′

2
] σ2

′  

 

y0 = ±
√3

2
[1 +

2

3
{−

(ϵ1
′ +ϵ2

′ )

3
+ [

−19

8
− ϵ1

′ +
(1−μ)

2μ
−

(1−μ)ϵ1
′

2μ
] σ1 +

[
15

8
+

ϵ1
′

2
−

(1−μ)

2μ
+

(1−μ)ϵ1
′

2μ
] σ2 + [

−19

8
−

3μ

8(1−μ)
+

3μϵ2
′

8(1−μ)
− ϵ2

′ ] σ1
′ +

[
15

8
+

7μ

8(1−μ)
−

7μϵ2
′

8(1−μ)
+

ϵ2
′

2
] σ2

′}]                                              (2.11) 

Now, differentiating Ω  partially with respect to x, y  respectively 

and evaluating Ωxx , Ωxy and Ωyy  at the equilibrium points 

(x0 , y0). 

Ωxx
0 =

3

4
+

ϵ2
′

2
−

3μϵ1
′

2
−

3μϵ2 
′

2
+ σ1 [

−3

8
+

69μ

16
+

169 ϵ1
′

32
−

39 μϵ1
′

32
−

3

4μ
+

7ϵ1
′

4μ
] + σ2 [

15

8
−

75 μ

16
−

625 ϵ1
′

32
+

599 μϵ1
′

32
+

3

4μ
−

7ϵ1
′

4μ
] + σ1

′ [
33

16
−

147μ

32
+

3 ϵ2
′

16
+

191 μϵ2
′

16
+

9μ2

16(1−μ)
−

15μ2ϵ2
′

16(1−μ)
] + σ2

′ [
−33

16
+

207μ

32
−

7 ϵ2
′

16
−

483 μϵ2
′

32
−

21μ2

16(1−μ)
+

35μ2ϵ2
′

16(1−μ)
]                                            (2.12) 

 

Ωxy
0 = {(

1

2
− μ −

ϵ1
′

9
−

μϵ1
′

9
+

2ϵ2 
′

9
−

14μϵ2 
′

9
) + σ1 [

11

24
−

17μ

24
+

199 ϵ1
′

48
−

143 μϵ1
′

48
−

1

3μ
+

17ϵ1
′

18μ
] + σ2 [

3

8
+

13μ

16
−

557 ϵ1
′

144
+

445 μϵ1
′

144
+

1

3μ
−

17ϵ1
′

18μ
] + σ1

′ [
7

12
+

31μ

48
−

161 μϵ2
′

36
−

7 ϵ2
′

6
−

μ2

4(1−μ)
−

μ2ϵ2
′

12(1−μ)
] +

σ2
′ [

−3

4
−

91μ

48
+

661 μϵ2
′

72
+

47 ϵ2
′

72
+

7μ2

12(1−μ)
+

7μ2ϵ2
′

36(1−μ)
]}                (2.13) 

 

Ωyy
0 =  

9

4
+

ϵ1
′

2
− ϵ2 

′ −
3μϵ1

′

2
+

μϵ2 
′

2
+ σ1 [

−21

16
+

849ϵ1
′

32
−

25μ

8
−

801 μϵ1
′

32
+

3

2μ
−

3ϵ1
′

2μ
] + σ2 [

33

16
−

837 ϵ1
′

32
+

21 μ

16
− +

837 μϵ1
′

32
−

3

2μ
+

3ϵ1
′

2μ
] +

σ1
′

(1−μ)
[
−21

8
−

183μ

16
+

8113 μϵ2
′

144
+

603μ2

32
−

7789μ2ϵ2
′

144
] +

σ2
′

(1−μ)
[
9

4
−

507μ

16
−

279 μϵ2
′

16
+

549μ2

32
+

195μ2ϵ2
′

16
](2.14) 

 

Now transforming Eqs. (2.6) and (2.7) in matrix form, we get 

 

X′ = P X                                                                                    (2.15) 

 

Where 

 

 X = [

ξ
 η 

 ξ′

η′

] , X′ =

[
 
 
 
ξ′

 η′ 

 ξ′′

η′′ ]
 
 
 

                                                             (2.16) 

 

P(ν, e) =  

[
 
 
 

0 0 1 0
0 0 0 1

∅Ωxx
0 ∅Ωxy

0 0 2

∅Ωyx
0 ∅Ωyy

0 −2 0]
 
 
 

                                         (2.17) 

3. Determination of characteristic exponents 

The variational equations of motion of the system are solved by 

exploiting the Floquet’s theory, which determines the characteris-

tics exponents in the system with periodic coefficients. 

The solution of the system is represented as 

 

XK = Yke
λk ν                                                                               (3.1) 

 

Where Yk is periodic with period T = 2π and λk is the characteris-

tic exponent of (2.16). Now dropping the suffix in (3.1), we get 

 

X = Yeλ ν                                                                                    (3.2) 

 

Differentiating (3.2) w.r.t  "ν"   and substituting this value in 

(2.15), the variational equation takes the form 

 

Y′ = (P − λI) Y                                                                           (3.3) 

 

Where I is the unit matrix of the same order as that of  P. 
Now using the expansion, 

 

Y =  Y(0) + eY(1) + e2Y(2) + ⋯ 
 

λ = λ0 + eλ1 + e2λ2 + ⋯                                                          (3.4) 

The matrix P is expanded as 

 

P(ν, e) =  P(0) + eP(1) + e2P(2) + ⋯                                        (3.5) 
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Where 

 

P(0) =

[
 
 
 

0 0 1 0
0 0 0 1

Ωxx
0 Ωxy

0 0 2

Ωyx
0 Ωyy

0 −2 0]
 
 
 

                                                      (3.6) 

 

And 

 

P(m) = (−cos ν)m C , m = 1,2,3, …….                                      (3.7) 

 

With 

 

C =

[
 
 
 

0 0 0 0
0 0 0 0

Ωxx
0 Ωxy

0 0 0

Ωyx
0 Ωyy

0 0 0]
 
 
 

                                                            (3.8) 

 

Substituting the values of Y , Y′ and P from (3.4) and (3.5) in (3.3), 

we get 

 

Y′(0) + eY′(1) + e2Y′(2) + ⋯ = [{(P(0) + eP(1) + e2P(2) + ⋯) −

I(λ0 + eλ1 + e2λ2 + ⋯)(Y(0) + eY(1) + e2Y(2) + ⋯}]           (3.9) 

 

Equating coefficient of terms with the same powers in e from both 

sides and using (3.4), we get 

 

Y′(0) + [Iλ0 − P(0)] = 0, 
 

y′(1) + [Iλ0 − P(0)]Y(1) = (−C cos ν − Iλ1)Y
(0) 

 

y′(2) + [Iλ0 − P(0)]Y(2) = (−C cos ν − Iλ1)Y
(1) + (C cos2ν −

I λ2)Y
(0)  

 

y′(3) + [Iλ0 − P(0)]Y(3) = (−C cos ν − Iλ1)Y
(2) + (C cos2ν −

I λ2)Y
(1) + (−C cos3ν − I λ3)Y

(0)  

 

Proceeding further, we obtain 

 

y′(n) + [Iλ0 − P(0)]Y(n) = ∑[ C (− cos ν)m − I λm]Y(n−m)

n

m=1

 

 

 (3.10) 

 

Assuming the constant vector for zeroth order solution, the nth 

order equation with non-homogeneous terms has frequencies up to 
n

2π⁄  , including it. Let the particular solution be of the form 

 

Y(n) = ∑ a(n,k)eik νk=n
k=−n  , n = 0,1,2,… ..                                  (3.11) 

 

Where 

 

a(n,k) =

[
 
 
 
 
 a1

(n ,k)

a2
(n ,k)

a3
(n ,k)

a4
(n ,k)

]
 
 
 
 
 

                                                                        (3.12) 

 

From Equations. (3.11) and (3.10), we obtain a system of equation 

which is required to determine λ up to the O(e2) as 

 

[Iλ0 − P(0)]a(0 ,0) = 0                                                              (3.13) 

 

[Iλ0 − P(0)]a(1 ,0) = λ1 a
(0 ,0)                                                   (3.14) 

[I(λ0 + i) − P(0)]a(1 ,1) = − 
1

2
 C a(0 ,0)                                   (3.15) 

 

[I(λ0 − i) − P(0)]a(1 ,−1) = − 
1

2
 C a(0 ,0)                                 (3.16) 

 

[Iλ0 − P(0)]a(2 ,0) = − λ1a
(1 ,0) + [

− C

2
−  I λ2] a

(0 ,0) −

 
C

2
(a(1 ,−1) + a(1 ,1))                                                                 (3.17) 

 

Now for existence of a(0 ,0) , it is clear from Eq. (3.13) that the 

required condition is  

 

det(Iλ0 − P(0)) = 0                                                                 (3.18) 

 

i.e   ||

λ0 0 −1 0
0 λ0 0 −1

−Ωxx
0 −Ωxy

0 λ0 −2

−Ωyx
0 −Ωyy

0 2 λ0

|| = 0 

 

On solving we get 

 

λ0
4 + (4 − Ωxx

0 − Ωyy
0 )λ0

2 + Ωxx
0 Ωyy

0 − (Ωxy
0 )2 = 0 

 

Or λ0
4 −  Qλ0

2 + R = 0                                                               (3.19) 

 

Where 

 

Q = −(4 − Ωxx
0 − Ωyy

0 ) , R =  Ωxx
0 Ωyy

0 − (Ωxy
0 )2                   (3.20) 

 

From Eq. (3.19) we have 

 

λ0
2 =

Q ± √Q2− 4 R

2
                                                                       (3.21) 

 

Substituting the values from Equations (2.12, 2.13 & 2.14) into 

Equations. (3.20) and (3.21) we get 

 

Q = −1 +
ϵ1
′

2
−

ϵ2
′

2
− 3μϵ1

′ − μϵ2 
′ + σ1 (

−27

16
+

19μ

16
+

509ϵ1
′

16
−

105 μϵ1
′

4
+

3

4μ
+

ϵ1
′

4μ
) + σ2 (

63

16
−

27 μ

8
−

731 ϵ1
′

16
+

359 μϵ1
′

8
−

3

4μ
−

ϵ1
′

4μ
) +

σ1
′ (

33

16
−

147μ

32
+

3 ϵ2
′

16
+

191 μϵ2
′

16
+

621μ2

32(1−μ)
−

1981μ2ϵ2
′

36(1−μ)
−

21

8(1−μ)
−

183 μ

16(1−μ)
+

8113 μϵ2
′

144 (1−μ)
) + σ2

′ (
−33

16
+

207μ

32
−

7 ϵ2
′

16
−

483 μϵ2
′

32
+

507μ2

32(1−μ)
+

115 μ2ϵ2
′

8(1−μ)
+

9

4(1−μ)
−

507 μ

16(1−μ)
−

279 μϵ2
′

16 (1−μ)
)                                     (3.22) 

 

R =
9ϵ1

′

8
−

9ϵ2
′

8
+

27μ

4
−

27μ2

4
−

45μϵ1
′

8
+

21μϵ2 
′

2
−

27μ2ϵ1
′

36
− 21μ2ϵ2 

′ +

σ1 (
−603

64
+

1593ϵ1
′

64
+

1173μ

64
+

471 μϵ1
′

64
+

27

16μ
−

71ϵ1
′

16μ
−

689μ2ϵ1
′

16
−

153μ2

16
) + σ2 (

495

64
−

3619ϵ1
′

64
−

639μ

64
− 18μϵ1

′ −
27

16μ
+

71ϵ1
′

16μ
+

1455μ2ϵ1
′

32
+

351μ2

32
) + σ1

′ (
45

64
+

287 ϵ2
′

64
−

873μ

128
+

 3663μϵ2
′

64
−

3143μ2ϵ2
′

64
+

2007μ2

128(1−μ)
+

279μ2

32
−

63

32(1−μ)
−

549 μ

64(1−μ)
−

21 ϵ2
′

16 (1−μ)
+

 7771μϵ2
′

192(1−μ)
−

2975μ2ϵ2
′

192(1−μ)
) + σ2

′ (
−1107

16
−

69 ϵ2
′

64
+

2205μ

128
−

 13399μϵ2
′

128
+

5591μ2ϵ2
′

64
−

117μ2

256(1−μ)
−

819μ2

32
+

27

16(1−μ)
−

1521 μ

64(1−μ)
+

9 ϵ2
′

32 (1−μ)
−

 615μϵ2
′

32(1−μ)
+

4379μ2ϵ2
′

64(1−μ)
)                                                                                    (3.23) 

 

From the first equation of the system of equation (3.13), we ob-

serve that it is necessary that the coefficient on the left with any 

column replaced by the non-homogeneous terms on the right must 

be zero 

 

det.[I λ0 − P(0)] + λ1a
(0 ,0) = 0                                              (3.24) 

 

Since λ enters as a factor in all elements of the replaced column, 

hence 

 

λ1 det. [I λ0 − P(0)] + a(0 ,0) = 0                                             (3.25) 
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But 

 

det. [ I λ0 − P(0)]  ≠ 0                                                              (3.26) 

 

Therefore 

 

λ1 = 0 

 

Again from Equations. (3.15) and (3.16), the solutions of a(1 ,1) 

and a(1 ,−1) are  

 

a(1 ,1) =  −
1

2
[I(λ0 + i) − P(0)]

−1
 C a(0 ,0) 

 

a(1 ,−1) = −
1

2
[I(λ0 − i) − P(0)]

−1
 C a(0 ,0)                             (3.27) 

 

Substituting this value of a(1 ,1) and a(1 ,−1) in the last equation  

We get; 

 

[I λ0 − P(0)]a(2 ,0) =  
C

4
[(I(λ0 + i) − P(0))

−1
+ (I(λ0 − i) −

P(0))
−1

] C a(0 ,0) + (
C

2
− Iλ2) a(0 ,0)                                         (3.28) 

 

The matrices within the square bracket are complex conjugate so 

considering real part only 

 

[I λ0 − P(0)]a(2 ,0) =  [
C

2
 Re (I(λ0 + i) − P(0))

−1
+ (

C

2
−

Iλ2)] a(0 ,0)                                                                                (3.29) 

 

After some mathematical manipulations, the value of λ2  can be 

obtained from (3.29) given by 

 

λ2 = −
(Q2−4R−16) λ0

2+ A0 F0+A1 F1+A2F2

4(Q2−4Q−4R) λ0
2+32 R

 λ0                              (3.30) 

Or 

 

λ2 = A λ0 

 

Where 

 

A = −
(Q2 − 4R − 16) λ0

2 + A0 F0 + A1 F1 + A2F2

4(Q2 − 4Q − 4R) λ0
2 + 32 R

 

 

A0 = [(Q + 4)2(Q + 4) − 4 Q R]λ0
2 − R(Q + 4) − 4 R2 

 

F0 =
1

N
[(Q + 1)λ0

2 + (Q + 1) + 2 R] 

 

A1 = −8 λ0R [2λ0
2 − (Q + 4)] 

 

F1 = −
 λ0

N
[2λ0

2 + (Q + 3)] 

 

A2 = −8λ0
2R(Q2 − 4R − 16)  

 

F2 = −
1

N
[λ0

2 − (Q + 1)] 

 

F1 = −
 λ0

N
[2λ0

2 + (Q + 3)] 

 

N = [4Q2 + 8 Q + 4 − 16 R]λ0
2 − 4 R + (Q + 1)2                 (3.31) 

 

Using value of Q i.e 

Q = −1 +
ϵ1
′

2
−

ϵ2
′

2
− 3μϵ1

′ − μϵ2 
′ + σ1 (

−27

16
+

19μ

16
+

509ϵ1
′

16
−

105 μϵ1
′

4
+

3

4μ
+

ϵ1
′

4μ
) + σ2 (

63

16
−

27 μ

8
−

731 ϵ1
′

16
+

359 μϵ1
′

8
−

3

4μ
−

ϵ1
′

4μ
) +

σ1
′ (

33

16
−

147μ

32
+

3 ϵ2
′

16
+

191 μϵ2
′

16
+

621μ2

32(1−μ)
−

1981μ2ϵ2
′

36(1−μ)
−

21

8(1−μ)
−

183 μ

16(1−μ)
+

8113 μϵ2
′

144 (1−μ)
) + σ2

′ (
−33

16
+

207μ

32
−

7 ϵ2
′

16
−

483 μϵ2
′

32
+

507μ2

32(1−μ)
+

115 μ2ϵ2
′

8(1−μ)
+

9

4(1−μ)
−

507 μ

16(1−μ)
−

279 μϵ2
′

16 (1−μ)
)  

 

We find the value of the parameter " A", which is calculated as 

mentioned below 

 

A = − 
E

F
                                                                                    (3.32) 

 

Where 

 

E =  (Q2 − 4R − 16) λ0
2 + A0 F0 + A1 F1 + A2F2                 (3.33) 

 

And 

 

F =  4(Q2 − 4Q − 4R) λ0
2 + 32 R                                            (3.34) 

 

Hence 

 

λ2 = A λ0                                                                                  (3.35) 

 

Thus, the characteristic exponent up to second order of approxi-

mation in " e " can be written as 

 

λ =  λ0 + e2λ2                                                                          (3.36) 

4. Transition curves separating stable and un-

stable regions 

The transition curves describe the stability of the triangular equi-

librium points in the elliptical restricted three body problem by 

separating stable and unstable regions. It can be found by simply 

equating the expression for the characteristic roots or the expo-

nents to the value for periodic solution in the range of 0 ≤  μ ≤  
1

2
 

From Floquet’s theory, if λk are the characteristics exponents, then 

in polar form it can be written as 

 

λk =  
1

T
[(In bk +  i(θk + 2nπ)] , n = 0,±1 ,±2 .                     (4.1) 

 

The real part of the exponent determines whether the solution is 

bounded or not. So, the corresponding periodic solution from (4.1) 

is 

 

λ = i (n ± 
1

2
) , n = 0,±1 ,±2 .                                               (4.2) 

 

In the range 0 ≤  μ ≤  
1

2
 ,the periodic solution provides 

 

λ∗ = ± 
i

2
                                                                                    (4.3) 

 

Replacing λ by λ∗ in (3.36) we obtain 

 

± 
i

2
= (1 + e2 A) λ0                                                                   (4.4) 

 

After further simplification we obtain 

 

e2 = [±(−
1

4 λ0
2)

1

2
− 1]

1

A
                                                            (4.5) 

5. Conclusion and discussion 

The stability of the triangular equilibrium points in ER3BP under 

the effect of radiating primaries has been investigated using the 

analytical method developed by Bennet[3,4].this method is based 
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on flouqet theory. Narayan and Usha [15] examined the stability 

of primaries under the assumption that the bigger primary is 

source of radiation and smaller one is a triaxial rigid body, and it 

has been seen that effect of radiation pressure is more significant 

than the oblateness and triaxiality.In another paper,Narayan and 

singh [16] investigated the linear stability of triangular points 

under the assumption that bothe the primaries are source of radia-

tion. The Authors Narayan,A., Pandey, K.K and Shrivastava,S.K. 

[17] has been investigated the stability of system under the as-

sumption that both the primaries are source of radiation and triaxi-

al as well ,by Grebenikov method [7].a minor dissimilarity is no-

ticed in the results ,which may be because of use of different 

Method. 

 

 
(Transition Curve 1: σ1,  σ2, σ1

′  , σ2
′ , ϵ1

′ , ϵ2
′ = 0 ) 

 

 
(Transition Curve 2:σ1 = 0.0003,  σ2 = 0.0002, σ1

′ =
0.0001 , σ2

′=0.0002, ϵ1
′ = 0.001, ϵ2

′ = 0.002 ) 

 

 
(Transition Curve 3: σ1 = 0.0004,  σ2 = 0.0002, σ1

′ =
0.0001 , σ2

′ = 0.0002, ϵ1
′ = 0.001, ϵ2

′ = 0.002 ) 

 

 
(Transition Curve 4: σ1 = 0.0001,  σ2 = 0.0002, σ1

′ =
0.0001 , σ2

′ = 0.0002, ϵ1
′ = 0.001, ϵ2

′ = 0.002 ). 

 

 
(Transition Curve 5: σ1 = 0.0001,  σ2 = 0.0003, σ1

′ =
0.0001 , σ2

′ = 0.0003, ϵ1
′ = 0.001, ϵ2

′ = 0.002 ). 

 

 
(Transition Curve 6: σ1 = 0.0001,  σ2 = 0.0002, σ1

′ =
0.0002 , σ2

′ = 0.0001, ϵ1
′ = 0.001, ϵ2

′ = 0.002 ). 

 

 
(Transition Curve 7: σ1 = 0.0001,  σ2 = 0.0002, σ1

′ =
0.0003 , σ2

′ = 0.0001, ϵ1
′ = 0.001, ϵ2

′ = 0.002 ). 
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(Transition Curve 8: σ1 = 0.0001,  σ2 = 0.0002, σ1

′ =
0.0001 , σ2

′ = 0.0002, ϵ1
′ = 0.001, ϵ2

′ = 0.002 ). 

 

 
(Transition Curve 9: σ1 = 0.0001,  σ2 = 0.0002, σ1

′ =
0.0001 , σ2

′ = 0.0003, ϵ1
′ = 0.001, ϵ2

′ = 0.002 ). 

 

 
(Transition Curve 10: σ1 = 0.0001,  σ2 = 0.0002, σ1

′ =
0.0001 , σ2

′ = 0.0002, ϵ1
′ = 0.002, ϵ2

′ = 0.001 ). 

 

 
(Transition Curve 11:σ1 = 0.0001,  σ2 = 0.0002, σ1

′ =
0.0001 , σ2

′ = 0.0002, ϵ1
′ = 0.004, ϵ2

′ = 0.001 ). 

 

 
(Transition Curve 12:σ1 = 0.0001,  σ2 = 0.0002, σ1

′ =
0.0001 , σ2

′ = 0.0002, ϵ1
′ = 0.001, ϵ2

′ = 0.003 ). 

 

 
(Transition Curve 13:σ1 = 0.0001,  σ2 = 0.0002, σ1

′ =
0.0001 , σ2

′ = 0.0002, ϵ1
′ = 0.001, ϵ2

′ = 0.004 ). 
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